Bohn R E,Short J E. How Much Information? [DB/OL]. [2009-09-01]. http://hmi.ucsd.edu/pdf/HMI_2009_ConsumerReport_Dec9_2009.pdf
[2]
Soliman M A,Ilyas I F,Chang K C C. Top-k Query Processing in Uncertain Databases // Proc of the 23rd IEEE International Conference on Data Engineering. Istanbul,Turkey,2007: 896-905
[3]
Soliman M A,Ilyas I F. Ranking with Uncertain Scores // Proc of the 25th IEEE International Conference on Data Engineering. Shanghai,China,2009: 317-328
[4]
Lian Xiang,Chen Lei. Probabilistic Ranked Queries in Uncertain Databases // Proc of the 11th International Conference on Extending Database Technology. Nantes,France,2008: 511-522
[5]
Hua Ming,Jian Pei,Zhang Weijie,et al. Ranking Queries on Uncertain Data: A Probabilistic Threshold Approach // Proc of the ACM SIGMOD International Conference on Management of Data. Vancouver,Canada,2008: 673-686
[6]
Hua Ming,Dei Jian,Zhang Wenjie,et al. Efficiently Answering Probabilistic Threshold Top-k Queries on Uncertain Data // Proc of the 24th IEEE International Conference on Data Engineering. Cancun,Mexico,2008: 1403-1405
[7]
Hua Ming,Pei Jian,Liu Xuemin. Ranking Queries on Uncertain Data. The International Journal on Very Large Data Bases,2011,20(1): 129-153
[8]
Zhang Xi,Chomicki J. On the Semantics and Evaluation of Top-k Queries in Probabilistic Databases // Proc of the 24th IEEE International Conference on Data Engineering. Cancun,Mexico,2008: 556-563
[9]
Cormode G,Li Feifei,Yi Ke. Semantics of Ranking Queries for Probabilistic Data and Expected Ranks // Proc of the 25th IEEE International Conference on Data Engineering. Shanghai,China,2009: 305-316
[10]
Jestes J,Cormode G,Li Feifei,et al. Semantics of Ranking Queries for Probabilistic Data. IEEE Trans on Knowledge and Data Engineering,2011,23(12): 1903-1917
[11]
Ge Tingjian,Zdonik S,Madden S. Top-k Queries on Uncertain Data: On Score Distribution and Typical Answers // Proc of the ACM SIGMOD International Conference on Management of Data. Providence,USA,2009: 375-388
[12]
Li Jian,Saha B,Deshpande A. An Unified Approach to Ranking in Probabilistic Databases. The VLDB Journal,2011,20(2): 249-275
[13]
Li Jian,Deshpande A. Ranking Continuous Probabilistic Datasets. Proceedings of the VLDB Endowment,2010,3(1/2): 638-649
[14]
Wang Chonghai,Yuan Liyan,You Jiahuai,et al. On Pruning for Top-k Ranking in Uncertain Databases. Proceedings of the VLDB Endowment,2011,4(10): 598-609
[15]
Dean J,Ghemawat S. MapReduce: Simplified Data Processing on Large Cluster. Communications of the ACM,2008,51(1): 107-113
[16]
Pei Jian,Jiang Bin,Liu Xuemin,et al. Probabilistic Skylines on Uncertain Data // Proc of the 33rd International Conference on Very Large Data Bases,Vienna,Austria,2007: 15-26
[17]
Dittrich J,Quiané-Ruiz J A,Jindal A,et al. Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even Noticing). Proceedings of the VLDB Endowment,2010,3(1/2): 515-529
[18]
Ding Linlin,Xin Junchang,Wang Guoren,et al. Efficient Skyline Query Processing of Massive Data Based on Map-Reduce. Chinese Journal of Computers,2011,34(10): 1785-1796 (in Chinese)(丁琳琳,信俊昌,王国仁,等.基于Map-Reduce的海量数据高效Skyline查询处理.计算机学报,2011,34(10): 1785-1796)
[19]
Li Lingjuan,Zhang Min. Research on Algorithms of Mining Association Rule under Cloud Computing Environment. Computer Technology and Development,2011,21(2): 43-46 (in Chinese)(李玲娟,张 敏.云计算环境下关联规则挖掘算法的研究.计算机技术与发展,2011,21(2): 43-46)
[20]
Jeffrey J,Yi Ke,Li Feifei. Building Wavelet Histograms on Large Data in MapReduce. Proceedings of the VLDB Endowment,2011,5(2): 109-120