全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

引入跟踪搜索和免疫选择的人工蜂群算法

, PP. 688-694

Keywords: 人工蜂群,跟踪,免疫,抗体,多样性

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对人工蜂群算法中食物源更新和观察蜂选择食物源机制存在的缺点,提出一种具有跟踪搜索和免疫选择的人工蜂群算法。在原搜索方法基础上,引入跟踪全局最优解和随机选择解的搜索方法,选择搜索到的最优解作为候选解,以加快种群的收敛速度,提高算法的收敛性;在观察蜂选择食物源时,引入免疫系统的抗体浓度调节机制,以维持种群的多样性,提高算法的全局搜索能力。对6个经典测试函数的仿真计算结果表明,与ABC、GABC、RABC和TABC算法相比,改进算法在寻优精度、收敛性能方面具有较明显的优势。

References

[1]  Karaboga D,Basturk B. On the Performance of Artificial Bee Colony Algorithm. Applied Soft Computing,2008,8(1): 687-697
[2]  Karaboga D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report,TR06. Kayseri,Turkey: Erciyes University,2005
[3]  Karaboga D,Akay B. A Comparative Study of Artificial Bee Colony Algorithm. Applied Mathematics and Computation,2009,214(1): 108-132
[4]  Singh A. An Artificial Bee Colony Algorithm for the Leaf-Constrained Minimum Spanning Tree Problem. Applied Soft Computing,2009,9(2): 625-631
[5]  Pan Quanke,Tasgetiren M F,Suganthan P N,et al. A Discrete Artificial Bee Colony Algorithm for the Lot-Streaming Flow Shop Scheduling Problem. Information Sciences,2011,181(12): 2455-2468
[6]  Luo Jun,Wang Qiang,Fu Li. Application of Modified Artificial Bee Colony Algorithm to Flatness Error Evaluation. Optics and Precision Engineering,2012,20(2): 422-430 (in Chinese)(罗 钧,王 强,付 丽.改进蜂群算法在平面度误差评定中的应用. 光学精密工程,2012,20(2): 422-430)
[7]  Xu Chunfan,Duan Haibin. Artificial Bee Colony Optimized Edge Potential Function Approach to Target Recognition for Low-Altitude Aircraft. Pattern Recognition Letters,2010,31(13): 1759-1772
[8]  Ozturk C,Karaboga D,Gorkemli B. Probabilistic Dynamic Deployment of Wireless Sensor Networks by Artificial Bee Colony Algorithm. Sensors,2011,11(6): 6056-6065[9]Akay B,Karaboga D. A Modified Artificial Bee Colony Algorithm for Real-Parameter Optimization. Information Sciences,2012,192(6): 120-142
[9]  Alatas B. Chaotic Bee Colony Algorithms for Global Numerical Optimization. Expert Systems with Applications,2010,37(8): 5682-5687
[10]  Zhu Guopu,Kwong S. Gbest-Guided Artificial Bee Colony Algorithm for Numerical Function Optimization. Applied Mathematics and Computation,2010,217(7): 3166-3173
[11]  Bao Li,Zeng Jianchao. Comparison and Analysis of the Selection Mechanism in the Artificial Bee Colony Algorithm // Proc of the 9th International Conference on Hybrid Intelligent Systems. Shenyang,China,2009,Ⅰ: 411-416
[12]  Gao Weifeng,Liu Sanyang. Improved Artificial Bee Colony Algorithm for Global Optimization. Information Processing Letters,2011,111(17): 871-882
[13]  Gao Weifeng,Liu Sanyang. A Modified Artificial Bee Colony Algorithm. Computers Operations Research,2012,39(3): 687-697
[14]  Gao Weifeng,Liu Sanyang. A Global Best Artificial Bee Colony Algorithm for Global Optimization. Journal of Computational and Applied Mathematics,2012,236(11): 2741-2753.
[15]  Karaboga D,Basturk B. A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony Algorithm. Journal of Global Optimization,2007,39(3): 459-471
[16]  Banharnsakun A,Achalakul T,Sirinaovakul B. The Best-So-Far Selection in Artificial Bee Colony Algorithm. Applied Soft Computing,2011,11(2): 2888-2901
[17]  Ursem R K. Diversity-Guided Evolutionary Algorithms // Proc of the 7th International Conference on Parallel Problem Solving from Nature. Granada,Spain,2002: 462-471
[18]  Jie Jing,Zeng Jianchao,Han Chongzhao. Self-Organized Particle Swarm Optimization Based on Feedback Control of Diversity. Journal of Computer Research and Development,2008,45(3): 464-471 (in Chinese)(介 婧,曾建潮,韩崇昭.基于群体多样性反馈控制的自组织微粒群算法.计算机研究与发展,2008,45(3): 464-471)
[19]  Sabat S L,Ali L,Udgata S K. Integrated Learning Particle Swarm Optimizer for Global Optimization. Applied Soft Computing,2011,11(1): 574-584
[20]  Sun Xun,Zhang Weiguo,Yin Wei,et al. Optimization of Flight Controller Parameters Based on PSO-Immune Algorithm. Journal of System Simulation,2007,19(12): 2765-2767 (in Chinese)(孙 逊,章卫国,尹 伟,等.基于免疫粒子群算法的飞行控制器参数寻优.系统仿真学报,2007,19(12): 2765-2767)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133