全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于稀疏表示的KCCA方法及在表情识别中的应用

, PP. 660-666

Keywords: 稀疏表示,核典型相关分析,面部表情识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

在面部表情识别中,由于图像特征中存在与情感语义无关的信息及噪声干扰等因素,在一定程度上影响表情识别的准确性。传统的基于核典型相关分析的识别方法难以有效克服这些因素的影响。为尽可能排除这些影响表情识别的因素,提出一种基于稀疏表示的核典型相关分析方法,并将其应用于表情识别中。该方法的基本思想是应用稀疏学习方法来自动选择表情特征矩阵中的关键特征谱成分进行表情特征与情感语义特征之间的相关性建模,然后通过建立的模型完成对待测表情图像的语义特征估计,并用于表情的分类识别。为验证所提方法较传统的基于核典型相关分析方法的优越性,选取国际标准表情数据库JAFFE进行实验,实验结果证实了所提方法的有效性。

References

[1]  Ekman P,Friesen W V. Pictures of Facial Affect. San Francisco,USA: Consulting Psychologists Press,1976
[2]  Kotsia I,Pitas I. Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines. IEEE Trans on Image Processing,2007,16(1): 172-187
[3]  Hotelling H. Relations between Two Sets of Variates. Biometrika,1936,28(3/4): 321-377
[4]  Hou Shudong,Sun Quansen,Xia Deshen. Supervised Locality Preserving Canonical Correlation Analysis Algorithm. Pattern Recognition and Artificial Intelligence,2012,25 (1): 143-149 (in Chinese)(侯书东,孙权森,夏德深.一种监督的局部保持典型相关分析算法.模式识别与人工智能,2012,25(1): 143-149)
[5]  Hong Quan,Chen Songcan,Ni Xuelei,Sub-Pattern Canonical Correlation Analysis with Application in Face Recognition. Acta Automatica Sinica,2008,34(1): 21-30 (in Chinese)(洪 泉,陈松灿,倪雪蕾.子模式典型相关分析及其在人脸识别中的应用.自动化学报,2008,34(1): 21-30)
[6]  Peng Yan,Zhang Daoqiang. Semi-Supervised Canonical Correlation Analysis Algorithm. Journal of Software,2008,19(11): 2822-2832 (in Chinese)(彭 岩,张道强.半监督典型相关分析算法.软件学报,2008,19(11): 2822-2832)
[7]  Zheng W,Zhou X,Zou C,et al. Facial Expression Recognition Using Kernel Canonical Correlation Analysis. IEEE Trans on Neural Networks,2006,17(1): 233-238
[8]  Hardoon D R,Shawe-Taylor J. Sparse Canonical Correlation Analysis. Machine Learning,2011,83(3): 331-353
[9]  Lykou A,Whittaker J. Sparse CCA Using a Lasso with Positivity Constraint. Computational Statistics and Data Analysis,2010,54(12): 3144-3157
[10]  Zhuang Ling,Zhuang Yueting,Wu Jiangqin,et al. Image Retrieval Approach Based on Sparse Canonical Correlation Analysis. Journal of Software,2012,23(5): 1295-1304 (in Chinese)(庄 凌,庄越挺,吴江琴,等.一种基于稀疏典型性相关分析的图像检索方法. 软件学报,2012,23(5): 1295-1304)
[11]  Hou Shudong,Sun Quansen. Sparsity Preserving Canonical Correlation Analysis with Application in Feature Fusion. Acta Automatica Sinica,2012,38(4): 659-665 (in Chinese)(侯书东,孙权森.稀疏保持典型相关分析及在特征融合中的应用.自动化学报,2012,38(4): 659-665)
[12]  Tibshirani R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B,1996,58(1): 267-288
[13]  Shen H P,Huang J Z. Sparse Principle Component Analysis via Regularized Low Rank Matrix Approximation. Journal of Multi-variate Analysis,2008,99(6): 1015-1034
[14]  Eckart C,Young G. The Approximation of One Matrix by Another of Low Rank. Psychometrika,1936,1(3): 211-218
[15]  Zhang Z,Lyons M,Schuster M,et al. Comparison between Geometry-Based and Gabor Wavelets-Based Facial Expression Recognition Using Multi-layer Perception // Procs of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition. Nara,Japan,1998: 454-459
[16]  Lyons M L,Budynek J,Akamatsu S. Automatic Classification of Single Facial Images. IEEE Trans on Pattern Analysis and Machine Intelligence,1999,21(12): 1357-1362
[17]  Zheng Wenming,Tang Hao. Lin Zhouchen,et al. A Novel Approach to Expression Recognition from Non-frontal Face Images,// Proc of the 12th IEEE International Conference on Computer Vision. Kyoto,Japan,2009: 1901-1908
[18]  Zhao Guoying,Pietikinen M. Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(6): 915-928

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133