Baena-García M,Campo-vila J D,Fidalgo R,et al. Early Drift Detection Method // Proc of the 4th ECML PKDD International Workshop on Knowledge Discovery from Data Streams. Berlin,Germany,2006: 77-86
[2]
Ko A H R,Sabourin R. From Dynamic Classifier Selection to Dynamic Ensemble Selection. Pattern Recognition,2008,41(5): 1718-1731
[3]
Tsymbal A,Pechenizkiy M,Cunningham P,et al. Dynamic Integration of Classifiers for Handling Concept Drift. Information Fusion,2008,9(1): 56-68
[4]
Wu Dengyuan,Wang Kai,He Tao,et al. A Dynamic Weighted Ensemble to Cope with Concept Drifting Classification // Proc of the 9th International Conference for Young Computer Scientists. Zhangjiajie,China,2008: 1854-1859
[5]
Kolter J Z,Maloof M A. Using Additive Expert Ensembles to Cope with Concept Drift // Proc of the 22nd International Conference on Machine Leaning. Bonn,Germany,2005: 449-456
[6]
Street W N,Kim Y S. A Streaming Ensemble Algorithm SEA for Large-Scale Classification // Proc of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco,USA,2001: 377-382
[7]
Sun Yue,Mao Guojun,Liu Xu,et al. Mining Concept Drifts from Data Streams Based on Multi-Classifiers. Acta Automatica Sinica,2008,34(1): 93-97 (in Chinese)(孙 岳,毛国君,刘 旭 ,等.基于多分类器的数据流中的概念漂移挖掘.自动化学报,2008,34(1): 93-97)
[8]
Masud M M,Gao J,Khan L,et al. A Multi-Partition Multi-Chunk Ensemble Technique to Classify Concept-Drifting Data Streams // Proc of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Bangkok,Thailand,2009: 363-375
[9]
Lazarescu M M,Venkatesh S,Bui H H. Using Multiple Windows to Track Concept Drift.Intelligent Data Analysis,2004,8(1): 29-59
[10]
Grinblat G L,Uzal L C,Ceccatto H A,et al. Solving Nonstationary Classification Problems with Coupled Support Vector Machines. IEEE Trans on Neural Networks,2011,22(1): 37-51
[11]
Shai B D,Blitzer J,Crammer K,et al. Analysis of Representations for Domain Adaptation // Schlkopf B,Platt J,Hoffman T,eds. Advances in Neural Information Processing System. Cambridge,USA: MIT Press,2007: 137-144
[12]
Sriperumbudur B K,Gretton A,Fukumizu K,et al. Hilbert Space Embeddings and Metrics on Probability Measures. Journal of Machine Learning Research,2010,11(4): 1517-1561
[13]
Gretton A,Fukumizu K,Harchaoui Z,et al. A Fast Consistent Kernel Two-Sample Test.[EB/OL] [2012-5-1].http://www.is.tuebingen.mpg.de/fileadmin/user_upload/files/publications/NIPS2009-Gretton_
[14]
pdf
[15]
Quanz B,Huan J. Large Margin Transductive Transfer Learning // Proc of the 18th ACM Conference on Information and Knowledge Management. New York,USA,2009: 1327-1336
[16]
Bruzzone L,Marconcini M. Domain Adaptation Problems: A DASVM Classification Technique and a Circular Validation Strategy. IEEE Trans on Pattern Analysis and Machine Intelligence,2010,32(5): 770-787
[17]
Grinblat G L,Granitto P M,Ceccatto H A. Time-Adaptive Support Vector Machines. IberoAmerican Joumal of Artificial Intelligence,2008,12(40): 39-50
[18]
Belkin M,Niyogi P,Sindhwani V,et al. Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples.Journal of Machine Learning Research,2006,7(11): 2399-2434
[19]
Wang Xiaoming,Wang Shitong. Ensemble Classifier Based on Minimum Class Variance SVM and Null Space Classifier. Pattern Recognition and Artificial Intelligence,2010,23(4): 441-449 (in Chinese) (王晓明,王士同.最小类方差支持向量机与零空间分类器的集成.模式识别与人工智能,2010,23(4): 441-449)
[20]
Tao Jianwen,Wang Shitong. Kernel Support Vector Machine for Domain Adaptation. Acta Automatica Sinica,2012,38(5): 797-881 (in Chinese)(陶剑文,王士同.领域适应核支持向量机.自动化学报,2012,38(5):797-881)
[21]
Chang C C,Lin C J. LIBSVM: A Library for Support Vector Machines. [EB/OL] [2010-10-26]. http://www.csie.ntu.edu.tw/~cjlin/ papers/libsvm.pdf
[22]
Harries M.Splice-2 Comparative Evaluation: Electricity Pricing. Technical Report,NSW-CSE-TR-9905. Sydney,Australia: University of South Wales,1999附录 式(5)的详细推导过程.