全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于混合粒子PHD滤波的多目标视频跟踪

, PP. 885-890

Keywords: 混合粒子滤波器,概率假设密度,多目标跟踪,多模态分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对可变数目多目标视频跟踪,粒子滤波不能持续维持目标的多模态分布问题,本文提出一种混合粒子概率假设密度(PHD)滤波的多目标视频跟踪算法.该算法首先用K-means算法对粒子进行空间分布聚类,给各粒子群附加身份标签,使各粒子群分别对应混合粒子滤波的各分量,采用相互独立的各分量粒子滤波跟踪各目标,这样提高了目标状态估计的准确性,也能有效维持各目标的多模态分布.实验结果表明,该算法能有效处理新目标出现、合并、分离等多目标跟踪问题.

References

[1]  Vermaak J,Doucet A,Pérez P. Maintaining Multi-Modality through Mixture Tracking // Proc of 9th IEEE International Conference on Computer Vision. Nice,France,2003,II: 1110-1116
[2]  Ouyang Cheng,Ji Hongbing,Guo Zhiqiang. Improved Multiple Model Particle PHD and CPHD Filters. Acta Automatica Sinica,2012,38(3): 341-348 (in Chinese)(欧阳成,姬红兵,郭志强.改进的多模型粒子PHD和CPHD滤波算法.自动化学报,2012,38(3): 341-348)
[3]  Bar-Shalom Y,Fortmann T. Tracking and Data Association. San Diego,USA: Academic Press, 1988
[4]  Reid D B. An Algorithm for Tracking Multiple Targets. IEEE Trans on Automatic Control,1979,24(6): 843-854
[5]  Mahler R P S. Multitarget Bayes Filtering via First-Order Multitarget Moments. IEEE Trans on Aerospace and Electronic Systems,2003,39(4): 1152-1178
[6]  Vo B N,Singh S,Doucet A. Sequential Monte Carlo Implementation of the PHD Filter for Multi-Target Tracking // Proc of the 6th International Conference on Information Fusion. Cairns,Australia,2003: 792-799
[7]  Panta K,Vo B N,Singh S. Improved Probability Hypothesis Density (PHD) Filter for Multitarget Tracking // Proc of the 3rd IEEE International Conference on Intelligent Sensing and Information Processing. Bangalore,India,2005: 213-218
[8]  King O,Forsyth D A. How Does Condensation Behave with a Finite Number of Samples // Proc of the 6th European Conference Computer Vision. Dublin,Ireland,2000,I: 695-709
[9]  Mahler R. PHD Filters of Higher Order in Target Number. IEEE Trans on Aerospace and Electronic Systems,2007,43(4): 1523-1542
[10]  Lin Qing,Xu Zhu,Wang Shitong,et al. Moving Objects Detection of Adaptive Gaussian Mixture Models on HSV. Computer Science,2010,37(10): 254-256 (in Chinese)(林 庆,徐 柱,王士同,等.HSV自适应混合高斯模型的运动目标检测.计算机科学,2010,37(10): 254-256)
[11]  Lin Qing,Shi Zhenjie,Zhan Yongzhao,et al. Tracking Regions of Interest in Moving People. Journal of Jiangsu University: Natural Science Edition,2010,31(2): 206-209 (in Chinese)(林 庆,史振杰,詹永照,等.基于感兴趣区域的运动人体跟踪.江苏大学学报:自然科学版,2010,31(2): 206-209)
[12]  Vo B N,Singh S,Doucet A. Sequential Monte Carlo Methods for Multi-Target Filtering with Random Finite Sets. IEEE Trans on Aerospace and Electronic Systems,2005,41(4): 1224-1245
[13]  Lin Qing,Xu Jianghui,Wang Shitong,et al. Automatic Detection of Regions of Interest in Moving People. Journal of Computer-Aided Design Computer Graphics,2009,21(10):1446-1450 (in Chinese)(林 庆,徐剑晖,王士同,等.运动人体感兴趣区域的自动检测.计算机辅助设计与图形学学报,2009,21(10): 1446-1450
[14]  Hu Shiqiang,Jing Zhongliang. Principles and Applications of Particle Filter. Beijing,China: Science Press,2010 (in Chinese)(胡士强,敬忠良,著.粒子滤波原理及其应用.北京:科学出版社,2010

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133