Wu Hu, Wang Yongji, Wang Zhe, et al. Two-Phase Collaborative Filtering Algorithm Based on Co-Clustering. Journal of Software, 2010, 21(5): 1042-1054 (in Chinese)(吴 湖,王永吉,王 哲,等.两阶段联合聚类协同过滤算法.软件学报, 2010, 21(5): 1042-1054)
[2]
Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
[3]
Leung C W K, Chan S, Chung F L. A Collaborative Filtering Framework Based on Fuzzy Association Rules and Multiple-Level Similarity. Knowledge and Information Systems, 2006, 10(3): 357-381
[4]
Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms // Proc of the 10th International Conference on World Wide Web. Hong Kong, China, 2001: 285-295
[5]
Kim H N, Ji A T, Ha I, et al. Collaborative Filtering Based on Co-llaborative Tagging for Enhancing the Quality of Recommendation. Electronic Commerce Research and Applications, 2010, 9(1): 73-83
[6]
Herlocker J, Konstan J, Terveen L, et al. Evaluating Collaborative Filtering Recommender Systems. ACM Trans on Information Systems, 2004, 22(1): 5-53
[7]
Ahn H J. A New Similarity Measure for Collaborative Filtering to Alleviate the New User Cold-Starting Problem. Information Sciences, 2008, 178(1): 37-51
[8]
Lee S K, Cho Y H, Kim S H. Collaborative Filtering with Ordinal Scale-Based Implicit Ratings for Mobile Music Recommendations. Information Sciences, 2010, 180(11): 2142-2155
[9]
Sarwar B, Karypis G, Konstan J, et al. Analysis of Recommendation Algorithms for E-Commerce // Proc of the 2nd ACM Conference on Electronic Commerce. New York, USA, 2000: 158-167
[10]
Bobadilla J, Hernando A, Ortega F, et al. Collaborative Filtering Based on Significances. Information Sciences, 2012, 185(1): 1-17
[11]
Kim N H, EI-Saddik A, Jo G S. Collaborative Error-Reflected Models for Cold-Start Recommender Systems. Decision Support Systems, 2011, 51(3): 519-531
[12]
Symeonidis P, Nanopoulos A, Papadopoulos A N, et al. Collaborative Recommender Systems: Combining Effectiveness and Efficiency. Expert Systems with Applications, 2008, 34(4): 2995-3013
[13]
Luo H, Niu C Y, Shen R M, et al. A Collaborative Filtering Framework Based on Both Local User Similarity and Global User Similarity. Machine Learning, 2008, 72(3): 231-245
[14]
Deng Ailin, Zhu Yangyong, Shi Bole. A Collaborative Filtering Recommendation Algorithm Based on Item Rating Prediction. Journal of Software, 2003, 14(9): 1621-1628 (in Chinese)(邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法.软件学报, 2003, 14(9): 1621-1628)
[15]
Sun Xiaohua. Research of Sparsity and Cold Start Problem in Collaborative Filtering. Ph.D Dissertation. Hangzhou, China: Zhejiang University, 2005 (in Chinese)(孙小华.协同过滤系统的稀疏性与冷启动问题研究.博士学位论文.杭州:浙江大学, 2005)
[16]
Li Cong, Liang Changyong, Ma Li. A Collaborative Filtering Re-commendation Algorithm Based on Domain Nearest Neighbor. Journal of Computer Research and Development, 2008, 45(9): 1532-1538 (in Chinese)(李 聪,梁昌勇,马 丽.基于领域最近邻的协同过滤推荐算法.计算机研究与发展, 2008, 45(9): 1532-1538)
[17]
Goldberg K, Roeder T, Gupta D, et al. Eigentaste: A Constant Time Collaborative Filtering Algorithm. Information Retrieval, 2001, 4(2): 133-151
[18]
Sarwar B M, Karypis G, Konstan J A, et al. Application of Dimensionality Reduction in Recommender System-A Case Study // Proc of the ACM WebKDD 2000 Web Mining for E-Commerce Workshop. Boston, USA, 2000: 82-90
[19]
Aggarwal C C. On the Effects of Dimensionality Reduction on High Dimensional Similarity Search // Proc of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. Santa Barbara, USA, 2001: 256-266
[20]
Zhao Yaqin, Zhou Xianzhong, He Xin, et al. An Effective High Attribute Dimensional Sparse Clustering. Pattern Recognition and Artificial Intelligence, 2006, 19(3): 289-294 (in Chinese)(赵亚琴,周献中,何 新,等.一种有效的高属性维稀疏数据聚类算法.模式识别与人工智能, 2006, 19(3): 289-294)
[21]
Miao Duoqian, Wang Jue. An Information Representation of the Concepts and Operations in Rough Set Theory. Journal of Software, 1999, 10(2): 113-116 (in Chinese)(苗夺谦,王 珏.粗糙集理论中概念与运算的信息表示.软件学报, 1999, 10(2): 113-116)
[22]
An Qiusheng, Shen Junyi, Wang Guoyin. A Clustering Method Based on Information Granularity and Rough Sets. Pattern Recognition and Artificial Intelligence, 2003, 16(4): 412-417 (in Chinese)(安秋生,沈钧毅,王国胤.基于信息粒度与Rough集的聚类方法研究.模式识别与人工智能, 2003, 16(4): 412-417)
[23]
Liu D R, Lai C H, Lee W J. A Hybrid of Sequential Rules and Collaborative Filtering for Product Recommendation. Information Sciences, 2009, 179(20): 3505-3519
[24]
Breese J, Heckerman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering // Proc of the 14th Conference on Uncertainty in Artificial Intelligence. Madison, USA, 1998: 43-52
[25]
Resnick P, Iacovou N, Suchak M, et al. GroupLens: An Open Architecture for Collaborative Filtering of Netnews // Proc of the ACM Conference on Computer Supported Cooperative Work. Chapel Hill, USA, 1994: 175-186