全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多视觉码本的图像表示

, PP. 909-915

Keywords: 图像分类,视觉码本,聚类分析,图像表示

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于词袋模型的图像表示方法的有效性主要受限于局部特征的量化误差。文中提出一种基于多视觉码本的图像表示方法,通过综合考虑码本构建和编码方法这两个方面的因素加以改进。具体包括:1)多视觉码本构建,以迭代方式构建多个紧凑且具有互补性的视觉码本;2)图像表示,首先针对多码本的情况,依次从各码本中选择相应的视觉单词并采用线性回归估计编码系数,然后结合图像的空间金字塔结构形成最终的图像表示。在一些标准测试集合的图像分类结果验证文中方法的有效性。

References

[1]  Lazebnik S, Schmid C, Ponce J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories / / Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, II: 2169-2178
[2]  Boureau Y, Bach F, LeCun Y, et al. Learning MidLevel Features for Recognition / / Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA,2010: 2559-2566
[3]  Lowe D. Distinctive Image Features from ScaleInvariant Keypoints.International Journal of Computer Vision, 2004, 60(2): 91-110
[4]  Sivic J, Zisserman A. Video Google: A Text Retrieval Approach to Object Matching in Videos / / Proc of the 9th IEEE International Conference on Computer Vision. Nice, France, 2003,域: 1470-1477
[5]  Aharon M, Elad M, Bruckstein A. KSVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation.IEEE Trans on Signal Processing, 2006, 54(11): 4311-4322
[6]  Jiang Yuguang, Ngo C W. Visual Word Proximity and Linguistics for Semantic Video Indexing and NearDuplicate Retrieval. Compu ter Vision and Image Understanding, 2009, 113(3): 405-414
[7]  Jurie F, Triggs B. Creating Efficient Codebooks for Visual Recogni tion / / Proc of the 10th International Conference on ComputerVision. Beijing, China, 2005, I: 604-610
[8]  Boiman O, Shechtman E, Irani M. In Defense of NearestNeighbor Based Image Classification / / Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Ancho rage, USA, 2008: 1-8
[9]  Gemert J, Geusebroek J, Veenman C, et al. Kernel Codebooks for Scene Categorization / / Proc of the 10th European Conference on Computer Vision. Marseille, France, 2008: 696-709
[10]  Coates A, Ng A Y. The Importance of Encoding versus Training with Sparse Coding and Vector Quantization / / Proc of the 28th International Conference on Machine Learning. Bellevue, USA, 2011: 921-928
[11]  Yang Jianchao, Yu Kai, Gong Yihong, et al. Linear Spatial Pyra mid Matching Using Sparse Coding for Image Classification / / Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 1794-1801
[12]  Wang Jinjun, Yang Jianchao, Yu Kai, et al. LocalityConstrained Linear Coding for Image Classification / / Proc of the IEEE Com puter Society Conference on Computer Vision and Pattern Recogni tion. San Francisco, USA, 2010: 3360-3367
[13]  Jegou H, Douze M, Schmid C. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search / / Proc of the 10th European Conference on Computer Vision. Marseille,France, 2008: 304-317
[14]  Zhou Xi, Yu Kai, Zhang Tong, et al. Image Classification Using SuperVector Coding of Local Image Descriptors / / Proc of the 11thEuropean Conference on Computer Vision. Heraklion, Greece,2010: 141-154
[15]  Yu Kai, Zhang Tong, Gong Yihong. Nonlinear Learning Using Local Coordinate Coding / / Proc of the Annual Conference on Neural Information Systems. Vancouver, Canada, 2009: 2223-2231

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133