全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于线性映射的多物种捕食元胞遗传算法

, PP. 959-967

Keywords: 多物种策略,元胞遗传算法,映射矩阵,进化方向

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高捕食元胞遗传算法的性能及在基因型上对种群进行区分,提出一种基于线性映射的多物种捕食元胞遗传算法。该算法通过引入映射矩阵,改变种群基因型到表现型的映射关系,使不同物种间所携带的遗传信息不同。在进化过程中,不同物种采用不同的遗传方式进行交叉,并根据种群离散程度自适应调整映射矩阵系数控制种群进化方向,有效提高算法跳出局部最优的能力。对若干低维及高维典型函数进行仿真实验,将文中算法与其它同类算法对比,实验结果表明,文中算法在全局收敛率上具有较明显的优势。

References

[1]  Alba E, Dorronsoro B. Cellular Genetic Algorithms. New York, USA: Springer, 2008
[2]  Gordo I, Campos P. Adaptive Evolution in a Spatially Structured Asexual Population. Genetica, 2006, 127(1/2/3): 217-229
[3]  Zhu Dalin, Zhan Teng, Tang Rui, et al. A Niche Cellular Genetic Algorithm Based on Evolution Rule. Advanced Materials Research, 2012. DOI:10.4028/www.scientific.net/AMR.482-484.2450
[4]  Alba E, Dorronsoro B. The Exploration/Exploitation Tradeoff in Dynamic Cellular Algorithms. IEEE Trans on Evolutionary Computation, 2005, 9(2): 126-142
[5]  Nebro A J, Durillo J J, Luna F, et al. A Cellular Genetic Algorithm for Multi-Objective Optimization. International Journal of Intelligent Systems, 2009, 24(7): 726-746
[6]  Gasparri A, Panzieri S, Pascucci F. A Spatially Structured Genetic Algorithm for Multi-Robot Localization. Intelligent Service Robotics, 2009, 2(1): 31-40
[7]  Huy N Q, Soon O Y, Hiot L M, et al. Adaptive Cellular Memetic Algorithms. Evolutionary Computation, 2009, 17(2): 231-256
[8]  Ishibuchi H, Sakane Y, Tsukamoto N, et al. Implementation of Cellular Genetic Algorithms with Two Neighborhood Structures for Single-Objective and Multi-Objective Optimization. Soft Computing, Methodologies and Applications, 2011, 15(9): 1749-1767
[9]  Lu Yuming, Li Ming, Li Ling. The Cellular Genetic Algorithm with Evolutionary Rule. Acta Electronica Sinica, 2010, 38(7): 1603-1607 (in Chinese)(鲁宇明,黎 明,李 凌.一种具有演化规则的元胞遗传算法.电子学报, 2010, 38(7): 1603-1607)
[10]  Du Weilin, Li Bin. Multi-Strategy Ensemble Particle Swarm Optimization for Dynamic Optimization. Information Sciences, 2008, 178(15): 3096-3109
[11]  Alami J, El Imrani A, Bouroumi A. A Multipopulation Cultural Algorithm Using Fuzzy Clustering. Applied Soft Computing, 2007, 7(2): 506-519
[12]  Taiji S, Yoshiki M, Kanya T, et al. Two-Level ALife System with Predator. IEICE Trans on Information and Systems, 2002, 85 (11): 1067-1073
[13]  Silva A, Neves A, Costa E. An Empirical Comparison of Particle Swarm and Predator Prey Optimisation // Proc of the 13th Irish International Conference on Artificial Intelligence and Cognitive Science. Limerick, Ireland, 2002: 103-110
[14]  Chowdhury S, Dulikravich G S, Moral R J. Modified Predator-Prey Algorithm for Constrained and Unconstrained Multi-Objective Optimization. International Journal of Mathematical Modelling and Numerical Optimization, 2009, 1(1/2): 1-38
[15]  Cattaneo G, Dennunzio A, Farina F. A Full Cellular Automaton to Simulate Predator-Prey Systems // Proc of the 7th International Conference on Cellular Automata for Research and Industry. Perpignan, France, 2006: 446-451
[16]  Chen Hao, Li Ming, Chen X B. A Predator-Prey Cellular Genetic Algorithm for Dynamic Optimization Problems [EB/OL].[2012-07-07]. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5678132
[17]  Chen Hao, Li Ming, Chen Xi. Predator-Prey Cellular Genetic Algorithm for Solving Dynamic Optimization Problems. Control and Decision, 2012, 27(6): 827-832 (in Chinese)(陈 昊,黎 明,陈 曦.处理动态优化问题的捕食元胞遗传算法.控制与决策, 2012, 27(6): 827-832)
[18]  Suganthan P N, Hansen N, Liang J J, et al. Problem Definition and Evaluation Criteria for the CEC2005 Special Session on Real-Parameter Optimization[EB/OL]. [2005-05-30]. http://www.lri.fr/~hansen/Tech-Report-May-30-05.pdf
[19]  Wu Xiaojin, Zhu Zhongying. Research on Diversity Measure of Genetic Algorithms. Information and Control, 2005, 34(4): 416-421 (in Chinese)(武晓今,朱仲英.遗传算法多样性测度问题研究.信息与控制, 2005, 34(4): 416-421)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133