全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

内涵亏值及二值命题逻辑中命题集合约简

, PP. 935-943

Keywords: 二值命题逻辑,命题集约简,概念格,内涵亏值

Full-Text   Cite this paper   Add to My Lib

Abstract:

求命题集所有可能的约简是二值命题逻辑的一个重要课题。目前的算法都是逐一求单个约简,汇总起来得到所有可能约简。文中应用形式概念的理论,提出内涵亏值、亏值超图等思想,给出一次即可求出所有约简的算法。该算法使计算全部约简的运算次数大为减少。

References

[1]  Yu Peng, Hou Zaien. Proposition Reduction Based on the Truth Degree of Proposition. Fuzzy Systems and Mathematics, 2010, 24(1): 66-70 (in Chinese)(于 鹏,候再恩.基于公式真度的公式集约简.模糊系统与数学, 2010, 24(1): 66-70)
[2]  Liberatore P. Redundancy in Logic II: 2CNF and Horn Propositional Formulae. Artificial Intelligence, 2008, 172(2/3): 265-299
[3]  Liberatore P. Redundancy in Logic III: Non-Monotonic Reasoning. Artificial Intelligence, 2008, 172(11): 1317-1359
[4]  Li Lifeng. Consistency and Reduction of Finite Proposition Set in n-Valued Propositional Logic L*n. Computer Engineering and Applications, 2009, 45(13): 59-61 (in Chinese)(李立峰.n值命题逻辑系统L*n中的有限命题集的相容性及约简.计算机工程与应用, 2009, 45 (13): 59-61)
[5]  Liberatore P. Redundancy in Logic I: CNF Prepositional Formulae. Artificial Intelligence, 2005, 163(2): 203-232
[6]  Ren Yan, Ma Xiaojue, Wang Hongtao. Reduction of a Propositional Set and Its Roots in (ξ)* System. Fuzzy Systems and Mathematics, 2006, 20(2): 23-27 (in Chinese)(任 燕,马晓珏,王洪涛.(ξ)*命题集的约简及命题集的根.模糊系统与数学, 2006, 20(2): 23-27)
[7]  Li Lifeng, Zhang Dongxiao. The Application of Concept Lattice Theory in the Reduction of the Proposition Set in Two-Valued Propositional Logic. Acta Electronica Sinica, 2007, 35(8): 1538-1542 (in Chinese)(李立峰,张东晓.概念格在二值命题逻辑命题集约简中的应用.电子学报, 2007, 35(8): 1538-1542)
[8]  Li Lifeng, Zhang Jianke, Feng Feng. Reduction Theory of Finite Proposition Set in Lukasiewicz Propositional Logic. Computer Engineering and Applications, 2009, 45(7): 44-45, 51 (in Chinese)(李立峰,张建科,冯 锋.Lukasiewicz命题逻辑系统中有限命题集的约简理论.计算机工程与应用, 2009, 45(7): 44-45, 51)
[9]  Ganter B, Wille R. Formal Concept Analysis Mathematical Foundations. Secaucus, USA: Springer-Verlag, 1999
[10]  Eiter T, Gottlob G. Identifying the Minimal Transversals of a Hypergraph and Related Problems. SIAM Journal on Computing, 1995, 24(6): 1278-1304
[11]  Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York, USA: Freeman, 1990

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133