Zhao Bin, Li Feifei, Xing E P. Large-Scale Category Structure Aware Image Categorization // Shawe-Taylor J, Zemel R S, Bartlett P L, eds. Advances in Neural Information Processing Systems. Red Hook, USA: Curran Associates, 2012, 24: 1251-1259
[2]
Yang Yiming. Expert Network: Effective and Efficient Learning from Human Decisions in Text Categorization and Retrieval // Proc of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: Springer-Verlag, 1994: 13-22
[3]
Li Feifei, Fergus R, Perona P. Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories. Computer Vision and Image Understanding, 2007, 106(1): 59-70
[4]
Griffin G, Holub A, Perona P. Caltech-256 Object Category Dataset[EB/OL]. [2013-03-30]. http://authors.library.caltech.edu/7694/1/CNS-TR-2007-001.pdf
[5]
Deng J, Dong W, Socher R, et al. Imagenet: A Large-Scale Hierarchical Image Database // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 248-255
[6]
Torralba A, Fergus R, Freeman W T. 80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(11): 1958-1970
[7]
Wang Mei, Zhou Xiangdong, Xu Hongtao, et al. Effective Image Auto-Annotation via Discriminative Hyperplane Tree Based Generative Model. Journal of Software, 2009, 20(9): 2450-2461 (in Chinese)(王 梅,周向东,许红涛,等.基于可判别超平面树的生成模型图像标注方法.软件学报, 2009, 20(9): 2450-2461)
[8]
Jiang Lixing, Hou Jin. Image Annotation Using the Ensemble Learning. Acta Automatica Sinica, 2012, 38(8): 1257-1262 (in Chinese)(蒋黎星,侯 进.基于集成分类算法的自动图像标注.自动化学报, 2012, 38(8): 1257-1262)
[9]
Breiman L, Friedman J H, Olshen R A, et al. Classification and Regression Trees. New York, USA: Wadsworth, 1984
[10]
Quinlan J R. C4.5: Programs for Machine Learning. San Francisco, USA: Morgan Kaufmann, 1993
[11]
Jordan M I, Jacobs R A. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation, 1994, 6(2): 181-214
[12]
Bishop C M, Svensén M. Bayesian Hierarchical Mixtures of Experts // Proc of the 19th Conference on Uncertainty in Artificial Intelligence. Burlington, Canada, 2003: 57-64
Cesa-Bianchi N, Gentile C, Zaniboni L. Incremental Algorithms for Hierarchical Classification. Journal of Machine Learning Research, 2006, 7: 31-54
[15]
Rousu J, Saunders C, Szedmak S, et al. Kernel-Based Learning of Hierarchical Multilabel Classification Models. Journal of Machine Learning Research, 2006, 7: 1601-1626
[16]
Vens C, Struyf J, Schietgat L, et al. Decision Trees for Hierarchical Multi-Label Classification. Machine Learning, 2008, 73(2): 185-214
[17]
Bi W, Kwok J T. Multilabel Classification on Tree- and Dag-Structured Hierarchies // Proc of the 28th International Conference on Machine Learning. New York, USA, 2011: 17-24
Zhou Dengyong, Xiao Lin, Wu Mingrui. Hierarchical Classification via Orthogonal Transfer // Proc of the 28th International Conference on Machine Learning. Washington, USA, 2011: 801-808
[20]
Cai L, Hofmann T. Hierarchical Document Categorization with Su-pport Vector Machines // Proc of the ACM International Conference on Information and Knowledge Management. New York, USA, 2004: 78-87
[21]
Binder A, Müller K, Kawanabe M. On Taxonomies for Multi-Class Image Categorization. International Journal of Computer Vision, 2011, 99(3): 281-301
[22]
Silla C N, Freitas A A. A Survey of Hierarchical Classification across Different Application Domains. Data Mining and Knowledge Discovery, 2011, 22(1/2): 31-72
[23]
Chen Yangchi, Crawford M M, Ghosh J. Integrating Support Vector Machines in a Hierarchical Output Space Decomposition Framework // Proc of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway, USA, 2004: 949-952
[24]
Kumar S, Ghosh J, Crawford M M. Hierarchical Fusion of Multiple Classifiers for Hyperspectral Data Analysis. Pattern Analysis and Applications, 2002, 5(2): 210-220
[25]
Casasent D, Wang Y F. A Hierarchical Classifier Using New Su-pport Vector Machines for Automatic Target Recognition. Neural Networks, 2005, 18(5/6): 541-548
[26]
Wang Y F, Casasent D. New Support Vector-Based Design Method for Binary Hierarchical Classifiers for Multi-Class Classification Problems. Neural Networks, 2008, 21(2/3): 502-510
[27]
Marszaek M, Schmid C. Semantic Hierarchies for Visual Object Recognition // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007: 1-7
[28]
Zweig A, Weinshall D. Exploiting Object Hierarchy: Combining Models from Different Category Levels // Proc of the 11th International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007: 1-8
[29]
Yuan Xun, Lai Wei, Mei Tao, et al. Automatic Video Genre Categorization Using Hierarchical SVM // Proc of the International Conference on Image Processing. Atlanta, USA, 2006: 2905-2908
[30]
Vural V, Dy J G. A Hierarchical Method for Multi-Class Support Vector Machines // Proc of the 21st International Conference on Machine Learning. New York, USA, 2004: 831-838
[31]
Lei H, Govindaraju V. Half-Against-Half Multi-Class Support Vector Machines // Proc of the 6th International Conference on Multiple Classifier Systems. Berlin, Germany: Springer, 2005: 156-164
[32]
Zhang Guoyun, Zhang Jin. A Novel SVM Multi-Class Classifier Based on Divisive Hierarchical Clustering. Control and Decision, 2005, 20(8): 931-934 (in Chinese)(张国云,章 兢.一种新的分裂层次聚类SVM多值分类器.控制与决策, 2005, 20(8): 931-934)
[33]
Liu Song, Yi Haoran, Chia L T, et al. Adaptive Hierarchical Multi-Class SVM Classifier for Texture-Based Image Classification // Proc of the IEEE International Conference on Multimedia and Expo. Amsterdam, The Netherlands, 2005: 1190-1193
[34]
Zhang Guoxuan, Kong Rui, Shi Zesheng, et al. Hierarchical Su-pport Vector Machines Based on Kernel Clustering. Control and Decision, 2004, 19(11): 1305-1307, 1311 (in Chinese) (张国宣,孔 锐,施泽生,等.基于核聚类方法的多层次支持向量机分类树.控制与决策, 2004, 19(11): 1305-1307, 1311)
[35]
Liu Lei, Comar P M, Saha S, et al. Recursive NMF: Efficient Label Tree Learning for Large Multi-Class Problems // Proc of the 21st International Conference on Pattern Recognition. Tsukuba, Japan, 2012: 2148-2151
[36]
Lorena A C, Carvalho A C. Minimum Spanning Trees in Hierarchical Multiclass Support Vector Machines Generation // Ali M, Esposito F, eds. Lecture Notes in Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2005, 3533: 422-431
[37]
Lorena A C, Carvalho A C. Building Binary-Tree-Based Multiclass Classifiers Using Separability Measures. Neurocomputing, 2010, 73(16/17/18): 2837-2845
[38]
Wang Y F, Casasent D. Hierarchical K-means Clustering Using New Support Vector Machines for Multi-Class Classification // Proc of the International Joint Conference on Neural Networks. Vancouver, Canada, 2006: 3457-3464
[39]
Marszaek M, Schmid C. Constructing Category Hierarchies for Visual Recognition // Proc of the 10th European Conference on Computer Vision. Berlin, Germany: Springer, 2008: 479-491
[40]
Cevikalp H. New Clustering Algorithms for the Support Vector Machine Based Hierarchical Classification. Pattern Recognition Le-tters, 2010, 31(11): 1285-1291
[41]
Wang Y F, Casasent D. New Weighted Support Vector K-means Clustering for Hierarchical Multi-Class Classification // Proc of the International Joint Conference on Neural Networks. Orlando, USA, 2007: 471-476
[42]
Griffin G, Perona P. Learning and Using Taxonomies for Fast Visual Categorization // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Alaska, USA, 2008: 1-8
[43]
Bengio S, Weston J, Grangier D. Label Embedding Trees for Large Multi-Class Tasks // Lafferty J, Williams C, Shawe-Taylor J, eds. Advances in Neural Information Processing Systems. Red Hook, USA: Curran Associates, 2011, 23: 163-171
[44]
Deng Jia, Satheesh S, Berg A C, et al. Fast and Balanced: Efficient Label Tree Learning for Large Scale Object Recognition // Shawe-Taylor J, Zemel R S, Bartlett P L, eds. Advances in Neural Information Processing Systems. Red Hook, USA: Curran Associates, 2012, 24: 567-575
[45]
Duda R O, Hart P E, Stork D G. Pattern Classification. 2nd Edition. New York, USA: John Wiley, 2001
[46]
Tsai M, Tsai S, Huang T S. Hierarchical Image Feature Extraction and Classification // Proc of the 18th International Conference on Multimedia. New York, USA, 2010: 1007-1010
[47]
Weigend A S, Wiener E D, Pedersen J O. Exploiting Hierarchy in Text Categorization. Information Retrieval, 1999, 1(3): 193-216
[48]
Koller D, Sahami M. Hierarchically Classifying Documents Using Very Few Words // Proc of the 14th International Conference on Machine Learning. San Francisco, USA, 1997: 170-178
[49]
Wang Z F, Wang Z H, Xie W J. Tree-Structured Bayesian Network Learning with Application to Scene Classification. Electronics Letters, 2011, 47(9): 540-541
[50]
Gao T, Koller D. Discriminative Learning of Relaxed Hierarchy for Large-Scale Visual Recognition // Proc of the IEEE International Conference on Computer Vision. Piscataway, USA, 2011: 2072-2079
[51]
Freeman C, Kulic D, Basir O. Joint Feature Selection and Hierarchical Classifier Design // Proc of the IEEE International Conference on Systems, Man and Cybernetics. Anchorage, USA, 2011: 1728-1734
[52]
Lu Yanting, Lu Jianfeng, Yang Jingyu. Adaptive Kernel Learning Based on Centered Alignment for Hierarchical Classification // Proc of the 21st International Conference on Pattern Recognition. Tsukuba, Japan, 2012: 569-572
[53]
Lu Yanting, Lu Jianfeng, Wang Liantao, et al. Constructing Class Hierarchy via Adaptive Kernel Learning // Proc of the Chinese Conference on Pattern Recognition. Berlin, Germany: Springer-Verlag, 2012: 72-79
[54]
Casasent D, Wang Y F. Automatic Target Recognition Using New Support Vector Machine // Proc of the International Joint Conference on Neural Networks. Montreal, Canada, 2005: 84-89
[55]
Wang Y F, Casasent D. Soft-Decision Hierarchical Classification Using SVM-Type Classifiers // Proc of the International Joint Conference on Neural Networks. Hong Kong, China, 2008: 1793-1800
[56]
Wang Y F, Casasent D. A Support Vector Hierarchical Method for Multi-Class Classification and Rejection // Proc of the International Joint Conference on Neural Networks. Atlanta, USA, 2009: 3281-3288
[57]
Yuan C, Casasent D. Support Vector Machines for Class Representation and Discrimination // Proc of the International Joint Conference on Neural Networks. Portland, USA, 2003: 1611-1616
[58]
Shi J, Mali J. Normalized Cuts and Image Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905
[59]
Hua Ye, Zhang Tao, Xi Houwei, et al. Research on Method of Hyperspectral Remote Sensing Image Classification Based on Decision Tree. Computer Technology and Development, 2012, 22(6): 198-202 (in Chinese)(华 晔,张 涛,奚后玮,等.基于决策树的高光谱遥感影像分类方法研究.计算机技术与发展, 2012, 22(6): 198-202)
[60]
Ma Yingying. Spaceborne Lidar Retrieval Based on Layer Classification and Data Fusion. Ph. D Dissertation. Wuhan, China: Wuhan University, 2010 (in Chinese)(马盈盈.基于层次分类与数据融合的星载激光雷达数据反演.博士学位论文.武汉:武汉大学, 2010)
[61]
Yu Xianchuan, Zhou Xin, Kang Zengji, et al. Hierarchical Classification of Rock and Soil Based on Characteristic Multi-Band Image. Journal of Jilin University: Earth Science Edition, 2012, 42(6): 1825-1833 (in Chinese)(余先川,周 鑫,康增基,等.一种基于多特征波段岩土层次分类方法.吉林大学学报:地球科学版, 2012, 42(6): 1825-1833)
[62]
He Chu, Liu Ming, Xu Lianyu, et al. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49 (in Chinese)(何 楚,刘 明,许连玉,等.利用特征选择自适应决策树的层次SAR图像分类.武汉大学学报:信息科学版, 2012, 37(1): 46-49)