全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于运动注意力融合模型的目标检测与提取算法

, PP. 1140-1145

Keywords: 目标检测,注意力模型,全局运动场景

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对全局运动场景下目标检测与提取方法的局限性,文中根据运动注意力形成机理,构建一种运动注意力时-空融合模型用于运动目标的检测与提取。该算法首先对运动矢量场进行叠加和滤波等预处理。然后根据运动矢量在时间和空间上的变化特点定义运动注意力融合模型,并采用该模型检测运动目标区域。最后利用形态学和边界跟踪方法对目标区域进行精确化提取。根据多个不同全局运动视频场景的测试结果,显示该算法比其它算法具有更好的准确性和实时性。

References

[1]  Wang J Y A, Adelson E. Representing Moving Images with Layers. IEEE Trans on Image Processing, 1994, 3(5): 625-638
[2]  Musmann H G, Hotter M, Ostermann J. Object-Oriented Analysis Synthesis Coding of Moving Images. Signal Processing: Image Communication, 1989, 1(2): 117-138
[3]  Diehl N. Object-Oriented Motion Estimation and Segmentation in ImageSequences. Signal Processing: Image Communication, 1991, 3(1): 23-56
[4]  Kim C, Hwang J N. Fast and Automatic Video Object Segmentation and Tracking for Content-Based Applications. IEEE Trans on Circuits and Systems for Video Technology, 2002, 12(2): 122-129
[5]  Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-Time Tracking // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collin, USA, 1999: 246-252
[6]  Magee D R. Tracking Multiple Vehicle Using Foreground, Background and Motion Models. Image and Vision Computing, 2004, 22(2): 143-155
[7]  Wren C R, Azarbayejani A, Darrell T, et al. Pfinder: Real-Time Tracking of the Human Body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785
[8]  Haritaoglu I, Harwood D, Davis L S. W4: Real-Time Surveillance of People and Their Activities. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8): 809-830
[9]  Bin Qi, Ghazal M, Amer A. Robust Global Motion Estimation Oriented to Video Object Segmentation. IEEE Trans on Image Processing, 2008, 17(6): 958-967
[10]  Xu Haifeng, Younis A A, Kabuka M R. Automatic Moving Object Extraction for Content-Based Applications. IEEE Trans on Circuits Systems for Video Technology, 2004, 14(6): 796-812
[11]  Itti L, Koch C. Computational Modeling of Visual Attention. Nature Reviews Neuroscience, 2001, 2(3): 193-203
[12]  Itti L, Koch C. Niebur E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259
[13]  Ma Yufei, Zhang Hongjiang. A Model Attention for Video Skimming // Proc of the International Conference on Image Processing. New York, USA, 2002, I: 129-132
[14]  Guironnet M. Spatio-Temporal Attention Model for Video Content Analysis // Proc of the International Conference on Image Processing. Genoa, Italy, 2005, III: 1156-1159
[15]  Zhang Jing, Zhou Li, Shen Lansun. Regions of Interest Extraction Based on Visual Attention Model and Watershed Segmentation // Proc of the IEEE International Conference on Neural Networks and Signal Processing. Zhenjiang, China, 2008: 375-378
[16]  Lee S H, Moon J, Lee M. A Region of Interest Based Image Segmentation Method Using a Biologically Motivated Selective Attention Model // Proc of the International Joint Conference on Neural Networks. Vancouver, Canada, 2006: 1413-1420
[17]  Han Junwei. Object Segmentation from Consumer Video: A Unified Framework Based on Visual Attention. IEEE Trans on Consumer Electronics, 2009, 55(3): 1597-1605
[18]  Fang Yuming, Lin Weisi, Lau C T, et al. A Visual Attention Model Combining Top-Down and Bottom-Up Mechanisms for Salient Object Detection // Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Prague, The Czech Republic, 2011: 1293-1296

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133