全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

加权的多尺度多分辨率人脸描述与识别方法

, PP. 378-382

Keywords: 多分辨率分析,局部二值模式,块Fisher判别分析,人脸识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

为克服人脸表情、光照变化等对图像中人脸识别结果的影响,文中提出一种加权的多尺度多分辨率人脸描述与识别方法.首先使用多分辨率分析分解图像为子带图像,并选择3个不同尺度的低频子带图像构建多尺度和多分辨率图像序列.然后针对图像序列的每幅图像编码人脸局部区域的中心像素与其邻域像素的灰度差的符号分量,体现人脸局部结构的重要性.再利用人脸局部区域中心像素与邻域像素的灰度差的幅值分量作为像素局部二值模式的权重.最后利用块Fisher线性判别降低特征描述符的维数,同时增强判别能力.在ORL和FERET人脸库上的实验表明该方法可获得明显的性能提升.

References

[1]  Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86
[2]  Belhumeur P N, Hespanha J P, Kriegman D. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
[3]  He X F, Yan S C, Hu Y X, et al. Face Recognition Using Laplacian Faces. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340
[4]  Baek K, Draper B A, Beveridge R, et al. PCA vs. ICA: A Comparison on the FERET Data Set // Proc of the Joint Conference on Information Sciences. Durham, USA, 2002: 824-827
[5]  Liu C J, Wechsler H. Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition. IEEE Trans on Image Processing, 2002, 11(4): 467-476
[6]  Ahonen T, Hadid A, Pietikinen M. Face Recognition with Local Binary Patterns // Proc of the 8th European Conference on Computer Vision. Prague, Czech Republic, 2004, I: 469-481
[7]  Zhang W C, Shan S G, Qing L Y, et al. Are Gabor Phases Really Useless for Face Recognition? Pattern Analysis and Applications, 2009, 12(3): 301-307
[8]  Yuan B H, Wang H, Ren M W. Face Recognition Based on Completed Local Binary Pattern. Application Research of Computer, 2012, 29(4): 1557-1559 (in Chinese)(袁宝华,王 欢,任明武.基于完整LBP特征的人脸识别.计算机应用研究, 2012, 29 (4): 1557-1559)
[9]  Zhao H X, Xu F, Chen J Y. Face Recognition Based on Multi-scale LBP. Computer Application and Software, 2012, 29(1): 257-259, 279 (in Chinese)(赵怀勋,徐 锋,陈家勇.基于多尺度LBP的人脸识别.计算机应用与软件, 2012, 29 (1): 257-259, 279)
[10]  Zhang B C, Shan S G, Chen X L, et al. Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition. IEEE Trans on Image Processing, 2006, 16(1): 57-68
[11]  Xie S F, Shan S G, Chen X L, et al. Fusing Local Patterns of Gabor Magnitude and Phase for Face Recognition. IEEE Trans on Image Processing, 2010, 19 (5): 1349-1361
[12]  Yang M, Zhang L, Shiu S C K, et al. Monogenic Binary Coding: An Efficient Local Feature Extraction Approach to Face Recognition. IEEE Trans on Information Forensics and Security, 2012, 7(6): 1738-1751
[13]  Ekenel H K, Gao H, Stiefelhagen R. 3D Face Recognition Using Local Appearance-Based Models. IEEE Trans on Information Forensics and Security, 2007, 2(3): 630-636
[14]  Inan T, Halici U. 3D Face Recognition with Local Shape Descriptors.IEEE Trans on Information Forensics and Security, 2012, 7(2): 577-587
[15]  Wright J, Yang A, Ganesh A, et al. Robust Face Recognition via Sparse Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227
[16]  Yang M, Zhang D, Yang J, et al. Robust Sparse Coding for Face Recognition // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Providence, USA, 2011: 625-632
[17]  Elhamifar E, Vidal R. Robust Classification Using Structured Sparse Representation // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Providence, USA, 2011: 1873-1879
[18]  Zhang W C, Shan S G, Gao W, et al. Local Gabor Binary Pattern Histogram Sequence (LGBPHS): A Novel Non-statistical Model for Face Representation and Recognition // Proc of the IEEE Interna- tional Conference on Computer Vision. Beijing, China, 2005, I: 786-791

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133