全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

协同过滤推荐技术综述*

, PP. 720-734

Keywords: 个性化服务,推荐系统,协同过滤,信息超载

Full-Text   Cite this paper   Add to My Lib

Abstract:

协同过滤是推荐系统中广泛使用的推荐技术,研究人员对如何完善协同过滤推荐技术开展大量工作,但是相应的研究总结较少.文中对协同过滤的相关研究进行全面回顾,首先阐述协同过滤的内涵及其存在的主要问题,包括稀疏性、多内容及可扩展性,然后详细介绍国内外学者针对以上问题的解决方案,最后指出协同过滤下一步的研究重点.文中介绍一个相对完整的协同过滤知识框架,对理清协同过滤的研究脉络,为后续研究提供参考,推进个性化信息服务的发展具有一定意义.

References

[1]  Chen R M. Challenge, Value and Coping Strategy in the Big Data Era. Mobile Communications, 2012, 36(17): 14-15 (in Chinese)(陈如明.大数据时代的挑战、价值与应对策略.移动通信, 2012, 36(17): 14-15)
[2]  Borchers A, Herlocker J, Konstan J, et al. Ganging up on Information Overload. Computer, 1998, 31(4): 106-108
[3]  Li C. Research on the Bottleneck Problems of Collaborative Filtering in E-commerce Recommender Systems. Ph. D Dissertation. Hefei, China: Hefei University of Technology, 2009 (in Chinese)(李 聪.电子商务推荐系统中协同过滤瓶颈问题研究.博士学位论文.合肥:合肥工业大学, 2009)
[4]  Resnick P, Varian H R. Recommender Systems. Communications of the ACM, 1997, 40(3): 56-58
[5]  Zenebe A, Norcio A F. Representation, Similarity Measures and Aggregation Methods Using Fuzzy Sets for Content-Based Recommender Systems. Fuzzy Sets and Systems, 2009, 160(1): 76-94
[6]  Schafer J B, Konstan J A, Riedl J. E-commerce Recommendation Applications. Data Mining and Knowledge Discovery, 2001, 5(1/2): 115-153
[7]  Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
[8]  Xia P Y. Research on Collaborative Filtering Algorithm of Persona-lized Recommendation Technology. Ph. D Dissertation. Qingdao, China: Ocean University of China, 2011 (in Chinese)(夏培勇.个性化推荐技术中的协同过滤算法研究.博士学位论文.青岛:中国海洋大学, 2011)
[9]  Su X N, Yang J L, Deng S H, et al. Theory and Technology of Data Mining. Beijing, China: Scientific and Technical Documentation Press, 2003 (in Chinese)(苏新宁,杨建林,邓三鸿,等.数据挖掘理论与技术.北京:科学技术文献出版社, 2003)
[10]  Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York, USA: ACM Press, 1997
[11]  Xu H L, Wu X, Li X D, et al. Comparison Study of Internet Re-commendation System. Journal of Software, 2009, 20(2): 350-362 (in Chinese)(许海玲,吴 潇,李晓东,等.互联网推荐系统比较研究.软件学报, 2009, 20(2): 350-362)
[12]  Jeong B, Lee J, Cho H. An Iterative Semi-explicit Rating Method for Building Collaborative Recommender Systems. Expert Systems with Applications, 2009, 36(3): 6181-6186
[13]  de Campos L M, Fernández-Luna J M, Huete J F, et al. Combining Content-Based and Collaborative Recommendations: A Hybrid Approach Based on Bayesian Networks. International Journal of Approximate Reasoning, 2010, 51(7): 785-799
[14]  Karypis G. Evaluation of Item-Based Top-N Recommendation Algorithms // Proc of the 10th International Conference on Information and Knowledge Management. Atlanta, USA, 2001: 247-254
[15]  Liang C Y, Leng Y J, Wang Y S, et al. Research on Group Re-commendation in E-commerce Recommender Systems. Chinese Journal of Management Science, 2013, 21(3): 153-158 (in Chinese)(梁昌勇,冷亚军,王勇胜,等.电子商务推荐系统中群体用户推荐问题研究.中国管理科学, 2013, 21(3): 153-158)
[16]  Herlocker J L, Konstan J A, Borchers A, et al. An Algorithmic Framework for Performing Collaborative Filtering // Proc of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Berkeley, USA, 1999: 230-237
[17]  Herlocker J, Konstan J A, Riedl J. An Empirical Analysis of Design Choices in Neighborhood-Based Collaborative Filtering Algorithms. Information Retrieval, 2002, 5(4): 287-310
[18]  Kim H N, El-Saddik A, Jo G S. Collaborative Error-Reflected Models for Cold-Start Recommender Systems. Decision Support Systems, 2011, 51(3): 519-531
[19]  Su X Y, Khoshgoftaar T M, Greiner R. A Mixture Imputation-Boosted Collaborative Filter // Proc of the 21st International Florida Artificial Intelligence Research Society Conference. Coconut Grove, USA, 2008: 312-316
[20]  Zhou J F, Tang X, Guo J F. An Optimized Collaborative Filtering Recommendation Algorithm. Journal of Computer Research and Development, 2004, 41(10): 1842-1847 (in Chinese)(周军锋,汤 显,郭景峰.一种优化的协同过滤推荐算法.计算机研究与发展, 2004, 41(10): 1842-1847)
[21]  Zhang G W, Li D Y, Li P, et al. A Collaborative Filtering Recommendation Algorithm Based on Cloud Model. Journal of Software, 2007, 18(10): 2403-2411 (in Chinese)(张光卫,李德毅,李 鹏,等.基于云模型的协同过滤推荐算法.软件学报, 2007, 18(10): 2403-2411)
[22]  Jones K S. A Statistical Interpretation of Term Specificity and Its Application in Retrieval. Journal of Documentation, 1972, 28(1): 11-21
[23]  Su X Y, Khoshgoftaar T M. A Survey of Collaborative Filtering Techniques[EB/OL]. [2013-11-01]. http://www.hindawi.com/journals/aai/2009/421425/
[24]  Lam S K, Riedl J. Shilling Recommender Systems for Fun and Profit // Proc of the 13th International Conference on World Wide Web. New York, USA, 2004: 393-402
[25]  Mobasher B, Burke R, Bhaumik R, et al. Effective Attack Models for Shilling Item-Based Collaborative Filtering Systems // Proc of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, USA, 2005: 13-23
[26]  Bell R M, Koren Y. Improved Neighborhood-Based Collaborative Filtering // Proc of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007: 7-14
[27]  Ahn H J. A New Similarity Measure for Collaborative Filtering to Alleviate the New User Cold-Starting Problem. Information Sciences, 2008, 178(1): 37-51
[28]  Liu H F, Hu Z, Mian A, et al. A New User Similarity Model to Improve the Accuracy of Collaborative Filtering. Knowledge-Based Systems, 2014, 56: 156-166
[29]  Schafer J B, Frankowski D, Herlocker J, et al. Collaborative Fil-tering Recommender Systems // Brusilovsky P, Kobsa A, Nejdl W, eds. The Adaptive Web. New York, USA: Springer, 2007: 291-324
[30]  Kim H N, Ha I, Lee K S, et al. Collaborative User Modeling for Enhanced Content Filtering in Recommender Systems. Decision Support Systems, 2011, 51(4): 772-781
[31]  Herlocker J L, Konstan J A, Terveen L G, et al. Evaluating Co-llaborative Filtering Recommender Systems. ACM Trans on Information Systems, 2004, 22(1): 5-53
[32]  Herlocker J L, Konstan J A, Riedl J. Explaining Collaborative Filtering Recommendations // Proc of the ACM Conference on Computer Supported Cooperative Work. Philadelphia, USA, 2000: 241-250
[33]  Zhang F, Sun X D, Chang H Y, et al. Research on Privacy-Preserving Two-Party Collaborative Filtering Recommendation. Acta Electronica Sinica, 2009, 37(1): 84-89 (in Chinese)(张 锋,孙雪冬,常会友,等.两方参与的隐私保护协同过滤推荐研究.电子学报, 2009, 37(1): 84-89)
[34]  Polat H, Du W L. Privacy-Preserving Collaborative Filtering Using Randomized Perturbation Techniques // Proc of the 3rd IEEE International Conference on Data Mining. Melbourne, USA, 2003: 625-628
[35]  Canny J. Collaborative Filtering with Privacy // Proc of the IEEE Symposium on Security and Privacy. Berkeley, USA, 2002: 45-57
[36]  Lü X J. Research on Intelligent Recommender System Based on Cloud Computing. Master Dissertation. Hefei, China: Anhui University, 2012 (in Chinese)(吕雪骥.基于云计算平台的智能推荐系统研究.硕士学位论文.合肥:安徽大学, 2012)
[37]  He J M. Research on Method of Listening to the Voice of Customers from the Web Community in Internet. Ph. D Dissertation. Hefei, China: Hefei University of Technology, 2010 (in Chinese)(何建民.面向网络社区聆听客户声音方法研究.博士学位论文.合肥:合肥工业大学, 2010)
[38]  Leung C W K, Chan S C F, Chung F L. A Collaborative Filtering Framework Based on Fuzzy Association Rules and Multiple-Level Similarity. Knowledge and Information Systems, 2006, 10(3): 357-381
[39]  Goldberg D, Nichols D, Oki B M, et al. Using Collaborative Fil-tering to Weave an Information Tapestry. Communications of the ACM, 1992, 35(12): 61-70
[40]  Resnick P, Iacovou N, Suchak M, et al. GroupLens: An Open Architecture for Collaborative Filtering of Netnews // Proc of the ACM Conference on Computer Supported Cooperative Work. Cha-pel Hill, USA, 1994: 175-186
[41]  Konstan J A, Miller B N, Maltz D, et al. GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM, 1997, 40(3): 77-87
[42]  Miller B N, Riedl J T, Konstan J A. Experiences with Grouplens: Making Usenet Useful Again // Proc of the USENIX Winter Technical Conference. Anaheim, USA, 1997: 219-231
[43]  Breese J S, Heckerman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering // Proc of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco, USA, 1998: 43-52
[44]  Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms // Proc of the 10th International Conference on World Wide Web. Hong Kong, China, 2001: 285-295
[45]  Papagelis M, Plexousakis D, Kutsuras T. Alleviating the Sparsity Problem of Collaborative Filtering Using Trust Inferences // Proc of the 3rd International Conference on Trust Management. Paris, France, 2005: 224-239
[46]  Barragáns-Martínez A B, Costa-Montenegro E, Burguillo-Rial J C, et al. A Hybrid Content-Based and Item-Based Collaborative Filtering Approach to Recommend TV Programs Enhanced with Singular Value Decomposition. Information Sciences, 2010, 180(22): 4290-4311
[47]  Kim H N, Ji A T, Ha I, et al. Collaborative Filtering Based on Collaborative Tagging for Enhancing the Quality of Recommendation. Electronic Commerce Research and Applications, 2010, 9(1): 73-83
[48]  Yu L, Liu L, Li X F. A Hybrid Collaborative Filtering Method for Multiple-Interests and Multiple-Content Recommendation in E-commerce. Expert Systems with Applications, 2005, 28(1): 67-77
[49]  Albadvi A, Shahbazi M. A Hybrid Recommendation Technique Based on Product Category Attributes. Expert Systems with Applications, 2009, 36(9): 11480-11488
[50]  Su J H, Wang B W, Hsiao C Y, et al. Personalized Rough-Set-Based Recommendation by Integrating Multiple Contents and Collaborative Information. Information Sciences, 2010, 180(1): 113-131
[51]  Sun X H. Research of Sparsity and Cold Start Problem in Colla-borative Filtering. Ph. D Dissertation. Hangzhou, China: Zhejiang University, 2005 (in Chinese)(孙小华.协同过滤系统的稀疏性与冷启动问题研究.博士学位论文.杭州:浙江大学, 2005)
[52]  Deng A L, Zhu Y Y, Shi B L. A Collaborative Filtering Recommendation Algorithm Based on Item Rating Prediction. Journal of Software, 2003, 14(9): 1621-1628 (in Chinese)(邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法.软件学报, 2003, 14(9): 1621-1628)
[53]  Li C, Liang C Y, Ma L. A Collaborative Filtering Recommendation Algorithm Based on Domain Nearest Neighbor. Journal of Computer Research and Development, 2008, 45(9): 1532-1538 (in Chinese)(李 聪,梁昌勇,马 丽.基于领域最近邻的协同过滤推荐算法.计算机研究与发展, 2008, 45(9): 1532-1538)
[54]  Zhang F, Chang H Y. Employing BP Neural Networks to Alleviate the Sparsity Issue in Collaborative Filtering Recommendation Algorithms. Journal of Computer Research and Development, 2006, 43(4): 667-672 (in Chinese)(张 锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题.计算机研究与发展, 2006, 43(4): 667-672)
[55]  Zhang J Y, Pu P. A Recursive Prediction Algorithm for Collaborative Filtering Recommender Systems // Proc of the ACM Conference on Recommender Systems. Minneapolis, USA, 2007: 57-64
[56]  Leng Y J, Liang C Y, Lu Q, et al. Collaborative Filtering Recommendation Algorithm Based on Neighbor Rating Imputation. Computer Engineering, 2012, 38(21): 56-58, 66 (in Chinese)(冷亚军,梁昌勇,陆 青,等.基于近邻评分填补的协同过滤推荐算法.计算机工程, 2012, 38(21): 56-58, 66)
[57]  Luo H, Niu C Y, Shen R M, et al. A Collaborative Filtering Framework Based on Both Local User Similarity and Global User Similarity. Machine Learning, 2008, 72(3): 231-245
[58]  Anand D, Bharadwaj K K. Utilizing Various Sparsity Measures for Enhancing Accuracy of Collaborative Recommender Systems Based on Local and Global Similarities. Expert Systems with Applications, 2011, 38(5): 5101-5109
[59]  Choi K, Suh Y. A New Similarity Function for Selecting Neighbors for Each Target Item in Collaborative Filtering. Knowledge-Based Systems, 2013, 37: 146-153
[60]  Kaleli C. An Entropy-Based Neighbor Selection Approach for Co-llaborative Filtering. Knowledge-Based Systems, 2014, 56: 273-280
[61]  Jeong B, Lee J, Cho H. Improving Memory-Based Collaborative Filtering via Similarity Updating and Prediction Modulation. Information Sciences, 2010, 180(5): 602-612
[62]  Leng Y J, Liang C Y, Ding Y, et al. Method of Neighborhood Formation in Collaborative Filtering. Pattern Recognition and Artificial Intelligence, 2013, 26(10): 968-974 (in Chinese)(冷亚军,梁昌勇,丁 勇,等.协同过滤中一种有效的最近邻选择方法.模式识别与人工智能, 2013, 26(10): 968-974)
[63]  Gao Y, Qi H, Liu J, et al. A Collaborative Filtering Recommendation Algorithm Combining Probabilistic Relational Models and User Grade. Journal of Computer Research and Development, 2008, 45(9): 1463-1469 (in Chinese)(高 滢,齐 红,刘 杰,等.结合似然关系模型和用户等级的协同过滤推荐算法.计算机研究与发展, 2008, 45(9): 1463-1469)
[64]  Melville P, Mooney R J, Nagarajan R. Content-Boosted Collaborative Filtering for Improved Recommendations // Proc of the 18th National Conference on Artificial Intelligence. Edmonton, Canada, 2002: 187-192
[65]  Lee T Q, Park Y, Park Y T. A Time-Based Approach to Effective Recommender Systems Using Implicit Feedback. Expert Systems with Applications, 2008, 34(4): 3055-3062
[66]  Liu D R, Lai C H, Lee W J. A Hybrid of Sequential Rules and Collaborative Filtering for Product Recommendation. Information Sciences, 2009, 179(20): 3505-3519
[67]  Cai Q, Han D M, Li H S, et al. Personalized Resource Recommendation Based on Tags and Collaborative Filtering. Computer Science, 2014, 41(1): 69-71, 110 (in Chinese)(蔡 强,韩东梅,李海生,等.基于标签和协同过滤的个性化资源推荐.计算机科学, 2014, 41(1): 69-71, 110)
[68]  Chen J, Yin J. A Collaborative Filtering Recommendation Algorithm Based on Influence Sets. Journal of Software, 2007, 18(7): 1685-1694 (in Chinese)(陈 健,印 鉴.基于影响集的协作过滤推荐算法.软件学报, 2007, 18(7): 1685-1694)
[69]  George T, Merugu S. A Scalable Collaborative Filtering Framework Based on Co-clustering // Proc of the 5th IEEE International Conference on Data Mining. 2005. DOI: 10.1109/ICDM.2005.14
[70]  Lee J S, Olafsson S. Two-Way Cooperative Prediction for Collaborative Filtering Recommendations. Expert Systems with Applications, 2009, 36(1): 5353-5361
[71]  Wang J, de Vries A P, Reinders M J T. Unifying User-Based and Item-Based Collaborative Filtering Approaches by Similarity Fusion // Proc of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Seattle, USA, 2006: 501-508
[72]  Liang C Y, Leng Y J. Collaborative Filtering Based on Information-Theoretic Co-clustering. International Journal of Systems Science, 2014, 45(3): 589-597
[73]  Aggarwal C C, Wolf J L, Wu K L, et al. Horting Hatches an Egg: A New Graph-Theoretic Approach to Collaborative Filtering // Proc of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, USA, 1999: 201-212
[74]  Yang X W, Guo Y, Liu Y, et al. A Survey of Collaborative Fil-tering Based Social Recommender Systems. Computer Communications, 2014, 41: 1-10
[75]  Zhou T, Ren J, Medo M, et al. Bipartite Network Projection and Personal Recommendation. Physical Review E, 2007. DOI: 10.1103/PhysRevE.76.046115
[76]  Zeng W, Zhu Y X, Lü L Y, et al. Negative Ratings Play a Positive Role in Information Filtering. Physica A: Statistical Mechanics and Its Applications, 2011, 390(23/24): 4486-4493
[77]  Pan H Y, Lin H F, Zhao J. Collaborative Filtering Algorithm Based on Matrix Partition and Interest Variance. Journal of the China Society for Scientific and Technical Information, 2006, 25(1): 49-54 (in Chinese)(潘红艳,林鸿飞,赵 晶.基于矩阵划分和兴趣方差的协同过滤算法.情报学报, 2006, 25(1): 49-54)
[78]  Goldberg K, Roeder T, Gupta D, et al. Eigentaste: A Constant Time Collaborative Filtering Algorithm. Information Retrieval, 2001, 4(2): 133-151
[79]  Hatami M, Pashazadeh S. Enhancing Prediction in Collaborative Filtering-Based Recommender Systems. International Journal of Computer Sciences and Engineering, 2014, 2(1): 48-51
[80]  Yang B, Lei Y, Liu D, et al. Social Collaborative Filtering by Trust // Proc of the 23rd International Joint Conference on Artificial Intelligence. Beijing, China, 2013: 2747-2753
[81]  Koren Y, Bell R, Volinsky C. Matrix Factorization Techniques for Recommender Systems. Computer, 2009, 42(8): 30-37
[82]  Koren Y, Bell R. Advances in Collaborative Filtering // Ricci F, Rokach R, Shapira B, et al., eds. Recommender Systems Handbook. New York, USA: Springer, 2011: 145-186
[83]  Linden G, Smith B, York J. Amazon.com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing, 2003, 7(1): 76-80
[84]  Yu K, Schwaighofer A, Tresp V, et al. Probabilistic Memory-Based Collaborative Filtering. IEEE Trans on Knowledge and Data Engineering, 2004, 16(1): 56-69
[85]  Russell S, Yoon V. Applications of Wavelet Data Reduction in a Recommender System. Expert Systems with Applications, 2008, 34(4): 2316-2325
[86]  Acilar A M, Arslan A. A Collaborative Filtering Method Based on Artificial Immune Network. Expert Systems with Applications, 2009, 36(4): 8324-8332
[87]  Sarwar B M, Karypis G, Konstan J, et al. Recommender Systems for Large-Scale E-commerce: Scalable Neighborhood Formation Using Clustering[EB/OL]. [2013-10-25]. http://www.grouplens.org/papers/pdf/sarwar_cluster.pdf
[88]  Li T, Wang J D, Ye F Y, et al. Collaborative Filtering Recommendation Algorithm Based on Clustering Basal Users. Systems Engineering and Electronics, 2007, 29(7): 1178-1182 (in Chinese)(李 涛,王建东,叶飞跃,等.一种基于用户聚类的协同过滤推荐算法.系统工程与电子技术, 2007, 29(7): 1178-1182)
[89]  Yu X, Li M Q. Effective Hybrid Collaborative Filtering Model Based on PCA-SOM. Systems Engineering-Theory & Practice, 2010, 30(10): 1850-1854 (in Chinese)(郁 雪,李敏强.基于PCA-SOM的混合协同过滤模型.系统工程理论与实践, 2010, 30(10): 1850-1854)
[90]  Leng Y J, Liang C Y, Lu W X. Clustering of Web Users Based on an Improved Affinity Propagation Algorithm. Journal of the China Society for Scientific and Technical Information, 2012, 31(9): 993-997 (in Chinese)(冷亚军,梁昌勇,陆文星.基于改进近邻传播算法的Web用户聚类.情报学报, 2012, 31(9): 993-997)
[91]  O'Connor M, Herlocker J. Clustering Items for Collaborative Fil-tering[EB/OL]. [2013-10-25]. http://www.cin.ufpe.br/~idal/rs/oconner_m.pdf
[92]  Deng A L, Zuo Z Y, Zhu Y Y. Collaborative Filtering Recommendation Algorithm Based on Item Clustering. Mini-Micro Systems, 2004, 25(9): 1665-1670 (in Chinese)(邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法.小型微型计算机系统, 2004, 25(9): 1665-1670)
[93]  Li Q, Myaeng S H, Kim B M. A Probabilistic Music Recommender Considering User Opinions and Audio Features. Information Processing and Management, 2007, 43(2): 473-487
[94]  Wu M L, Chang C H, Liu R Z. Integrating Content-Based Fil-tering with Collaborative Filtering Using Co-clustering with Augmented Matrices. Expert Systems with Applications, 2014, 41(6): 2754-2761
[95]  Wu H, Wang Y J, Wang Z, et al. Two-Phase Collaborative Fil-tering Algorithm Based on Co-clustering. Journal of Software, 2010, 21(5): 1042-1054 (in Chinese)(吴 湖,王永吉,王 哲,等.两阶段联合聚类协同过滤算法.软件学报, 2010, 21(5): 1042-1054)
[96]  Sarwar B, Karypis G, Konstan J, et al. Application of Dimensionality Reduction in Recommender System-A Case Study[EB/OL]. [2013-10-25]. http://www.dtic.mil/get-tr-doc/pdf?AD=ADA439541
[97]  Vozalis M G, Margaritis K G. Using SVD and Demographic Data for the Enhancement of Generalized Collaborative Filtering. Information Sciences, 2007, 177(15): 3017-3037
[98]  Chen G, Wang F, Zhang C S. Collaborative Filtering Using Orthogonal Nonnegative Matrix Tri-factorization. Information Processing and Management, 2009, 45(3): 368-379
[99]  Luo X, Xia Y N, Zhu Q S. Incremental Collaborative Filtering Recommender Based on Regularized Matrix Factorization. Knowledge-Based Systems, 2012, 27: 271-280
[100]  Yu J H, Yang W Q. Multivariate Statistical Analysis and Its Application. Guangzhou, China: Sun Yat-Set University Press, 2005 (in Chinese)(余锦华,杨维权.多元统计分析与应用.广州:中山大学出版社, 2005)
[101]  Kim D, Yum B J. Collaborative Filtering Based on Iterative Principal Component Analysis. Expert Systems with Applications, 2005, 28(4): 823-830
[102]  Lee J S, Jun C H, Lee J, et al. Classification-Based Collaborative Filtering Using Market Basket Data. Expert Systems with Applications, 2005, 29(3): 700-704
[103]  Papagelis M, Rousidis I, Plexousakis D, et al. Incremental Co-llaborative Filtering for Highly-Scalable Recommendation Algorithms // Proc of the 15th International Symposium on Foundations of Intelligent Systems. Saratoga, USA, 2005: 553-561
[104]  Luo X, Xia Y N, Zhu Q S, et al. Boosting the K-Nearest-Neighborhood Based Incremental Collaborative Filtering. Knowledge-Based Systems, 2013, 53: 90-99
[105]  Li C, Liang C Y. Incremental Updating Mechanism of Collaborative Filtering in Accordance with User Interest Changes. Journal of the China Society for Scientific and Technical Information, 2010, 29(1): 59-66 (in Chinese)(李 聪,梁昌勇.适应用户兴趣变化的协同过滤增量更新机制.情报学报, 2010, 29(1): 59-66)
[106]  Leng Y J, Liang C Y, Zhang E Q, et al. A Collaborative Filtering Recommendation Algorithm Based on Item-Class Preference. Journal of the China Society for Scientific and Technical Information, 2011, 30(7): 714-720 (in Chinese)(冷亚军,梁昌勇,张恩桥,等.基于项类偏好的协同过滤推荐算法.情报学报, 2011, 30(7): 714-720)
[107]  Zhang H P, Li L B, Li X, et al. Collaborative Filtering Recommendation Algorithm Based on Item-Class Rating. Journal of the China Society for Scientific and Technical Information, 2008, 27(2): 218-223 (in Chinese)(张海鹏,李烈彪,李 仙,等.基于项目分类预测的协同过滤推荐算法.情报学报, 2008, 27(2): 218-223)
[108]  Papagelis M, Plexousakis D, Rousidis I, et al. Qualitative Analysis of User-Based and Item-Based Prediction Algorithms for Recommendation Systems[EB/OL]. [2013-10-25]. http://www.ics.forth.gr/isl/publications/paperlink/hdms04_camera_ready_submitted.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133