全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑用户标注状态的标签推荐方法*

, PP. 673-682

Keywords: 社会标签,标签推荐,标注状态,概率分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

为进一步提升标签推荐的质量,提出一种考虑用户当前标注状态的标签推荐方法.首先根据统计分析方法发现社会标签系统中用户使用的标签总数随时间有一定的变化规律,因此提出当前用户标注状态可能属于下列3种情况之一:成长态、成熟态和休眠态,并给出相关定义.然后根据3种用户标注状态的不同特点,提出不同策略下计算标签的概率分布,为用户推荐最可能使用的标签.对比实验表明文中方法能提供更准确的推荐结果.

References

[1]  Hamouda S, Wanas N M. PUT-Tag: Personalized User-Centric Tag Recommendation for Social Bookmarking Systems. Social Network Analysis and Mining, 2011, 1(4): 377-385
[2]  Lu C M, Hu X H, Park J R, et al. Post-Based Collaborative Fil-tering for Personalized Tag Recommendation // Proc of the iConfe-rence. Seattle, USA, 2011: 561-568
[3]  Liu K P, Fang B X, Zhang W Z. Exploring Social Relations for Personalized Tag Recommendation in Social Tagging Systems. IEICE Trans on Information and Systems, 2011, 94-D(3): 542-551
[4]  Jschke R, Marinho L, Hotho A, et al. Tag Recommendations in Social Bookmarking Systems. AI Communications, 2008, 21(4): 231-247
[5]  Kim H N, El Saddik A. Personalized PageRank Vectors for Tag Recommendations: Inside FolkRank // Proc of the 5th ACM Conference on Recommender Systems. Chicago, USA, 2011: 45-52
[6]  Kubatz M, Gedikli F, Jannach D. LocalRank-Neighborhood-Based, Fast Computation of Tag Recommendations // Proc of the 12th International Conference on E-commerce and Web Technologies. Toulouse, France, 2011: 258-269
[7]  Ramezani M. Improving Graph-Based Approaches for Personalized Tag Recommendation. Journal of Emerging Technologies in Web Intelligence, 2011, 3(2): 168-176
[8]  Krestel R, Fankhauser P. Personalized Topic-Based Tag Recommendation. Neurocomputing, 2012, 76(1): 61-70
[9]  Zhang B, Zhang Y, Gao K N, et al. Combining Relation and Content Analysis for Social Tagging Recommendation. Journal of Software, 2012, 23(3): 476-488 ( in Chinese)(张 斌,张 引,高克宁,等.融合关系与内容分析的社会标签推荐.软件学报, 2012, 23(3): 476-488)
[10]  Feng W, Wang J Y. Incorporating Heterogeneous Information for Personalized Tag Recommendation in Social Tagging Systems // Proc of the 18th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining. Beijing, China, 2012: 1276-1284
[11]  Zhang Y, Zhang N, Tang J. A Collaborative Filtering Tag Recommendation System Based on Graph // Proc of the European Conference on Machine Learning and Principles and Practice of Know-ledge Discovery in Databases. Bled, Slovenia, 2009: 297-306
[12]  Gemmell J, Schimoler T, Ramezani M, et al. Improving FolkRank with Item-Based Collaborative Filtering // Proc of the 3rd ACM Conference on Recommender System. New York, USA, 2009: 17-24
[13]  Ponte J M, Croft W B. A Language Modeling Approach to Information Retrieval // Proc of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Melbourne, Australia, 1998: 275-281
[14]  Jschke R, Marinho L, Hotho A, et al. Tag Recommendations in Folksonomies // Proc of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases. Warsaw, Poland, 2007: 506-514
[15]  Batagelj V, Zavernik M. Fast Algorithms for Determining (Gene-ralized) Core Groups in Social Networks. Advances in Data Analysis and Classification, 2011, 5(2): 129-145
[16]  Nieminen I T. Combining Tag Recommendations Based on User History [EB/OL].[2013-04-20]. http:// ceur-ws.org/vol_497/paper_08.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133