全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分块最大相似性嵌入稀疏编码的人脸识别*

, PP. 954-960

Keywords: 人脸识别,稀疏表示,最大块相似性嵌入,非重叠分块

Full-Text   Cite this paper   Add to My Lib

Abstract:

图像相似性先验嵌入的方法能有效提升基于稀疏编码表示的人脸识别在低维特征空间的识别性能.针对非受控人脸图像存在表情变化、部分遮挡和伪装的问题,提出基于图像分块的最大相似性嵌入稀疏编码表示的人脸识别方法.该方法首先将训练图像和测试图像进行同样的非重叠分块;然后计算测试图像与各训练图像对应分块间的相似性,并以其最大值度量图像间的相似性;最后将提取的最大块相似性信息嵌入到稀疏编码表示的人脸识别中.在AR标准人脸库上的测试表明,与全局相似性嵌入的加权稀疏编码表示分类方法相比,文中方法在训练样本和测试样本同时存在表情变化、遮挡和伪装的人脸识别中具有较大的性能提升.

References

[1]  Zhao W Y, Chellappa R, Phillips P J, et al. Face Recognition: A Literature Survey. ACM Computing Surveys, 2003, 35(4): 399-458
[2]  Zhou J, Lu C Y, Zhang C S, et al. A Survey of Automatic Human Face Recognition. Acta Electronica Sinica, 2000, 28(4): 102-106 (in Chinese)(周 杰,卢春雨,张长水,等.人脸自动识别方法综述.电子学报, 2000, 28(4): 102-106)
[3]  Yang M, Zhang L. Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary // Proc of the 11th European Conference on Computer Vision. Crete, Greece, 2010, VI: 448-461
[4]  Zhang L, Yang M, Feng X C. Sparse Representation or Collaborative Representation: Which Helps Face Recognition? // Proc of the IEEE International Conference on Computer Vision. Barcelona, Spain, 2011: 471-478
[5]  Yang A Y, Wright J, Ma Y, et al. Feature Selection in Face Recognition: A Sparse Representation Perspective[EB/OL]. [2013-09-01]. http://perception.csl.illinois.edu/recognition/Files/PAMI_Feature.pdf
[6]  Lai J, Jiang X D. Modular Weighted Global Sparse Representation for Robust Face Recognition. IEEE Signal Processing Letters, 2012, 19(9): 571-574
[7]  Deng W H, Hu J N, Guo J. Extended SRC: Undersampled Face Recognition via Intraclass Variant Dictionary. IEEE Trans on Pa- ttern Analysis and Machine Intelligence, 2012, 34(9): 1864-1870
[8]  Hui K H, Li C L, Zhang L. Sparse Neighbor Representation for Classification. Pattern Recognition Letters, 2012, 33(5): 661-669
[9]  Lu C Y, Min H, Gui J, et al. Face Recognition via Weighted Sparse Representation. Journal of Visual Communication and Image Representation, 2013, 24(2): 111-116
[10]  Yang M, Zhang L, Yang J, et al. Robust Sparse Coding for Face Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2011: 625-632
[11]  Wang J J, Yang J C, Yu K, et al. Locality-Constrained Linear Coding for Image Classification // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 3360-3367
[12]  Guo S, Ruan Q Q, Miao Z J. Similarity Weighted Sparse Representation for Classification // Proc of the 21st International Conference on Pattern Recognition. Tsukuba, Japan, 2012: 1241-1244
[13]  Waqas J, Zhang Y, Zhang L. Collaborative Neighbor Representation Based Classification Using l2-Minimization Approach. Pattern Recognition Letters, 2013, 34(2): 201-208
[14]  Hu Z P, Li J. Face Recognition of Joint Sparse Representation Based on Low-Rank Subspace Recovery. Acta Electronica Sinica, 2013, 41(5): 987-991 (in Chinese)(胡正平,李 静.基于低秩子空间恢复的联合稀疏表示人脸识别算法.电子学报, 2013, 41(5): 987-991)
[15]  Zhu J, Yang W K, Tang Z M. A Dictionary Learning Based Kernel Sparse Representation Method for Face Recognition. Pattern Recognition and Artificial Intelligence, 2012, 25(5): 859-864 (in Chinese)(朱 杰,杨万扣,唐振民.基于字典学习的核稀疏表示人脸识别方法.模式识别与人工智能, 2012, 25(5): 859-864)
[16]  Yu K, Zhang T, Gong Y. Nonlinear Learning Using Local Coordinate Coding // Proc of the 23rd Annual Conference on Neural Information Processing Systems. Vancouver, Canada, 2009: 2223-2231
[17]  Yu K, Zhang T. Improved Local Coordinate Coding Using Local Tangents // Proc of the 27th International Conference on Machine Learning. Haifa, Israel, 2010: 1215-1222
[18]  Hua G, Yang M H, Learned-Miller E, et al. Introduction to the Special Section on Real-World Face Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33(10): 1921-1924
[19]  Candes E J, Wakin M B. An Introduction to Compressive Sampling. IEEE Signal Processing Magazine, 2008, 25(2): 21-30
[20]  Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227
[21]  Chao Y W, Yeh Y R, Chen Y W, et al. Locality-Constrained Group Sparse Representation for Robust Face Recognition // Proc of the 18th IEEE International Conference on Image Processing. Brussels, Belgium, 2011: 761-764
[22]  Timofte R, van Gool L. Weighted Collaborative Representation and Classification of Images // Proc of the 21st International Conference on Pattern Recognition. Tsukuba, Japan, 2012: 1606-1610

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133