全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合ORB特征和色彩模型的视觉跟踪算法*

DOI: 10.16451/j.cnki.issn1003-6059.201501012, PP. 90-96

Keywords: 视觉跟踪,ORB特征,CAMShift跟踪,特征模板

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决CAMShift算法在色彩相似背景下跟踪失效的问题,提出一种结合ORB特征点和目标色彩模型的视觉跟踪算法.运用ORB特征匹配检测目标的初始位置,提出自适应的色彩分割阈值算法以提高目标的色彩模型精度,并在跟踪过程中通过ORB特征点包含信息对搜索窗口进行修正.然后对目标的丢失增加判断方法,并且建立迭代更新的特征模板用于重新定位丢失目标.实验结果证明,与CAMShift算法和基于特征提取的同类改进算法相比,该算法在目标快速运动场景下的跟踪具有较好的鲁棒性,能够对错误的跟踪结果进行判断并修正,并在计算效率上得到较大的提升.

References

[1]  Zhao Y J, Pei H L, Zhou H B. Improved Vision-Based Algorithm for Unmanned Aerial Vehicles Autonomous Landing. Journal of Multimedia, 2013, 8(2): 90-97
[2]  Bay H, Ess A, Tuytelaars T, et al. Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding, 2008, 110(3): 346-359
[3]  Rublee E, Rabaud V, Konolige K, et al. ORB: An Efficient Alternative to SIFT or SURF // Proc of the IEEE International Conference on Computer Vision. Barcelona, Spain, 2011: 2564-2571
[4]  Rosten E, Porter R, Drummond T. Faster and Better: A Machine Learning Approach to Corner Detection. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 32(1): 105-119
[5]  Calonder M , Lepetit V, Strecha C, et al. BRIEF: Binary Robust Independent Elementary Features // Proc of the 11th European Conference on Computer Vision. Heraklion, Greece, 2010, IV: 778-792
[6]  Fischler M A, Bolles R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM, 1981, 24(6): 381-395
[7]  Ohlmeyer E J, Menon P K. Applications of the Particle Filter for Multi-object Tracking and Classification // Proc of the American Control Conference. Washington, USA, 2013: 6181-6186
[8]  Niknejad H T, Takeuchi A, Mita S, et al. On-Road Multivehicle Tracking Using Deformable Object Model and Particle Filter with Improved Likelihood Estimation. IEEE Trans on Intelligent Transportation Systems, 2012, 13(2): 748-758
[9]  Quast K, Kaup A. Shape Adaptive Mean Shift Object Tracking Using Gaussian Mixture Models // Adami N, Cavallaro A, Leonardi R, et al. Analysis, Retrieval and Delivery of Multimedia Content. New York, USA: Springer-Verlag, 2013: 107-122
[10]  Beyan C, Temizel A. Adaptive Mean-Shift for Automated Multi Object Tracking. IET Computer Vision, 2012, 6(1): 1-12
[11]  Babenko B, Yang M H, Belongie S. Visual Tracking with Online Multiple Instance Learning // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 983-990
[12]  Kalal Z, Mikolajczyk K, Matas J. Tracking-Learning-Detection. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422
[13]  Zhang K H, Zhang L, Yang M H. Real-Time Compressive Tracking // Proc of the 12th European Conference on Computer Vision. Flo-rence, Italy, 2012, III: 864-877
[14]  Bradski G R, Clara S. Computer Vision Face Tracking for Use in a Perceptual User Interface. Intel Technology Journal, 1998, Q2: 1-15
[15]  Exner D, Bruns E, Kurz D, et al. Fast and Robust CAMShift Tracking // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. San Francisco, USA, 2010: 9-16
[16]  Sun K, Liu S R. Combined Algorithm with modified Camshift and Kalman Filter for Multi-object Tracking. Information and Control, 2009, 38(1): 9-14 (in Chinese)(孙 凯,刘士荣.多目标跟踪的改进Camshift/卡尔曼滤波组合算法.信息与控制, 2009, 38(1): 9-14
[17]  Qiu X N, Liu S R, Liu F. An Adaptive Kernel-Based Target Tracking Method Based on Multiple Features Fusion. IEEJ Transactions on Electrical and Electronic Engineering, 2012, 7(1): 91-97
[18]  Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133