全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于局部邻域像素的快速时空特征点检测方法*

DOI: 10.16451/j.cnki.issn1003-6059.201501010, PP. 74-79

Keywords: 时空特征点,非极大值抑制,三维快速特征点,局部邻域

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对时空特征点检测算法计算效率较低和特征点冗余度较大的问题,提出一种基于邻域像素的快速时空特征点检测方法.通过寻找三维时空中局部邻域内像素值差异较大的点以快速定位时空特征点,然后采用非极大值抑制的方法剔除其中的冗余点,将筛选后的时空特征点用于人体行为识别.此外,还根据二项分布原理研究特征点检测中邻域像素分割阈值的取值范围及其它检测参数优化问题.实验结果表明该算法具有较高的检测速度,既能稳定提取足够数量的特征点又能降低其冗余度,在行为识别中也保持较高的准确率.

References

[1]  Harris C, Stephens M. A Combined Corner and Edge Detector// Proc of the 4th Alvey Vision Conference. Manchester, UK, 1988: 147-151
[2]  Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
[3]  Laptev I, Lindeberg T. Space-Time Interest Points // Proc of the 9th IEEE International Conference on Computer Vision. Nice, France, 2003, I: 432-439
[4]  Dollár P, Rabaud V, Cottrell G, et al. Behavior Recognition via Sparse Spatio-Temporal Features // Proc of the 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. Beijing, China, 2005: 65-72
[5]  Rosten E, Drummond T. Fusing Points and Lines for High Performance Tracking // Proc of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005, II: 1508-1515
[6]  Koelstra S, Patras I. The FAST-3D Spatio-Temporal Interest Region Detector // Proc of the 10th Workshop on Image Analysis for Multimedia Interactive Services. London, UK, 2009: 242-245
[7]  Yu T H, Kim T K, Cipolla R. Real-Time Action Recognition by Spatiotemporal Semantic and Structural Forests // Proc of the British Machine Vision Conference. Aberystwyth, UK, 2010. DOI: 10.5244/C.42.52
[8]  Zhou L P. Corners Detection Based on Improved Harris Algorithm. Computer Technology and Development, 2013, 23(2): 11-14 (in Chinese) (周龙萍.基于改进的Harris算法检测角点.计算机技术与发展, 2013, 23(2): 11-14)
[9]  Wang J, Wang H L, Xiang M S, et al. Subpixel Accuracy Central Location of Circle Target Based on Nonmaximum Suppression. Chinese Journal of Scientific Instrument, 2012, 33(7): 1460-1468 (in Chinese) (王 静,王海亮,向茂生,等.基于非极大值抑制的圆目标亚像素中心定位.仪器仪表学报, 2012, 33(7): 1460-1468)
[10]  Gorelick L, Blank M, Shechtman E, et al. Actions as Space-Time Shapes. IEEE Trans of Pattern Analysis and Machine Intelligence, 2007, 29(12): 2247-2253
[11]  Laptev I, Marszalek M, Schmid C, et al. Learning Realistic Human Actions from Movies // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008: 1-8
[12]  Mahbub U, Imtiaz H, Ahad M A R, et al. Motion Clustering-Based Action Recognition Technique Using Optical Flow // Proc of the International Conference on Informatics, Electronics & Vision. Dhaka, Bangladesh, 2012: 919-924
[13]  Acar E, Senst T, Kuhn A, et al. Human Action Recognition Using Lagrangian Descriptors // Proc of the 14th IEEE International Workshop on Multimedia Signal Processing. Banff, Canada, 2012: 360-365

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133