Von Frisch K. Decoding the Language of the Bee // Lindsten J ed. Nobel Lecture, Physiology or Medicine. Singapore, Singapore: Word Scientific Publishing Co., 1992
[2]
Seeley T D. The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Boston, USA: Harvard University Press, 1996
[3]
Karaboga D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report, TR06. Kayseri, Turkey: Erciyes University, 2005
[4]
Tsai P W, Pan J S, Liao B Y, et al. Enhanced Artificial Bee Colony Optimization. International Journal of Innovative Computing, Information and Control, 2009, 5(12): 1-ISII08-247
[5]
Ding H J, Feng Q X. Artificial Bee Colony Algorithm Based on Boltzmann Selection Policy. Computer Engineering and Applications,2009, 45(31): 53-55 (in Chinese) (丁海军,冯庆娴.基于Boltzmann选择策略的人工蜂群算法.计算机工程与应用,2009, 45(31): 53-55)
[6]
Alatas B. Chaotic Bee Colony Algorithms for Global Numerical Optimization. Expert System with Applications, 2010, 37(8): 5682-5687
[7]
Yin J X, Meng H Y. Artificial Bee Colony Algorithm with Chaotic Differential Evolution Search. Computer Engineering and Applications, 2011, 47(29): 27-30 (in Chinese) (银建霞,孟红云.具有混沌差分进化搜索的人工蜂群算法.计算机工程与应用, 2011, 47(29): 27-30)
[8]
Jia R M, He D X, Shi S T. Artificial Bee Colony Optimization Algorithm Studying Climb Process of Monkey Algorithm. Computer Engineering and Applications, 2012, 48(27): 53-57 (in Chinese) (贾瑞民,何登旭,石绍堂.学习猴群爬过程的人工蜂群优化算法.计算机工程与应用, 2012, 48(27): 53-57)
[9]
Hua L G, Wang Y. Applications of Number-Theoretic Methods in Approximate Analysis. Beijing, China: Science Press,1978 (in Chinese) (华罗庚,王 元.数论在近似分析中的应用.北京:科学出版社,1978)
[10]
Zhao R Q, Tang W S. Monkey Algorithm for Global Numerical Optimization. Journal of Uncertain Systems, 2008, 2(3): 165-176
[11]
Shi Y H, Eberhart R. A Modified Particle Swarm Optimizer // Proc of the IEEE International Conference on Evolutionary Computation. Anchorage, USA, 1998: 69-73
[12]
Kennedy J, Mendes R. Population Structure and Particle Swarm Performance // Proc of the IEEE Congress on Evolutionary Computation. Honolulu, USA, 2002, II: 1671-1676
[13]
Mendes R, Kennedy J, Neves J. The Fully Informed Particle Swarm: Simpler, Maybe Better. IEEE Trans on Evolutionary Computation, 2004, 8(3): 204-210
[14]
Liang J J, Qin A K, Suganthan P N, et al. Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Trans on Evolutionary Computation, 2006, 10(3): 281-295
[15]
Angeline P J. Using Selection to Improve Particle Swarm Optimization // Proc of the IEEE International Conference on Evolution Computation. Anchorage, USA, 1998: 84-89
[16]
Monson C K, Seppi K D. Exposing Origin-Seeking Bias in PSO // Proc of the 7th Annual Conference on Genetic and Evolutionary Computation. Washington, USA, 2005: 241-248
[17]
Suganthan P N, Hansen N, Liang J J, et al. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Technical Report, No.2005005. Singapore, Singapore: Nanyang Technological University, 2005
[18]
Jakob W. A General Cost-Benefit-Based Adaptation Framework for Multimeme Algorithms. Memetic Computing, 2010, 2(3): 201-218
[19]
El-Abd M. Generalized Opposition-Based Artificial Bee Colony Algorithm // Proc of the IEEE Congress on Evolutionary Computation. Brisbane, Australia, 2012: 1-4
[20]
Liao T J, Montes de Oca M A, Stützle T. Computational Results for an Automatically Tuned CMA-ES with Increasing Population Size on the CEC′05 Benchmark Set. Soft Computing, 2013, 17(6): 1031-1046
[21]
Wilcoxon F. Individual Comparisons by Ranking Method. Biometrics Bulletin, 1945, 1(6): 80-83