Wang Z L, Zhou L P, Chen Z H. Analysis of Robust Background Modeling Techniques for Different Information Levels. Pattern Recognition and Artificial Intelligence, 2009, 22(2): 240-245 (in Chinese) (王智灵,周露平,陈宗海.针对不同信息特征的鲁棒背景建模技术分析.模式识别与人工智能, 2009, 22(2): 240-245)
[2]
Wren C R, Azarbayejani A, Darrell T, et al. Pfinder: Real-Time Tracking of the Human Body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785
[3]
Horprasert T, Harwood D, Davis L S. A Statistical Approach for Real-Time Robust Background Subtraction and Shadow Detection // Proc of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece, 1999: 1-19
[4]
Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-Time Tracking // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA, 1999: 2246-2252
[5]
Zivkovic Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction // Proc of the 17th International Conference on Pattern Recognition. Cambridge, UK, 2004, II: 28-31
[6]
El Baf F, Bouwmans T, Vachon B. A Fuzzy Approach for Background Subtraction // Proc of the 15th IEEE International Conference on Image Processing. San Diego, USA, 2008: 2648-2651
[7]
Chen Y T, Chen C S, Huang C R, et al. Efficient Hierarchical Method for Background Subtraction. Pattern Recognition, 2007, 40(10): 2706-2715
[8]
Migdal J, Grimson W E L. Background Subtraction Using Markov Thresholds // Proc of the 7th IEEE Workshop on Application of Computer Vision. Breckenridge, USA, 2005, II: 58-65
[9]
Wang Y Z, Liang Y, Pan Q, et al. Spatiotemporal Background Modeling Based on Adaptive Mixture of Gaussians. Acta Automatica Sinica, 2009, 35(4): 372-378 (in Chinese) (王永忠,梁 彦,潘 泉,等.基于自适应混合高斯模型的时空背景建模.自动化学报, 2009, 35(4): 372-378)
[10]
Wu M J, Peng X R. Spatio-Temporal Context for Codebook-Based Dynamic Background Subtraction. AEU-International Journal of Electronics and Communications, 2010, 64(8): 739-747
[11]
Chen G, Yu Z Z, Wen Q, et al. Improved Gaussian Mixture Model for Moving Object Detection // Proc of the 3rd International Conference on Artificial Intelligence and Computational Intelligence. Taiyuan, China, 2011: 179-186
[12]
Yin Z Z, Collins R. Belief Propagation in a 3D Spatio-Temporal MRF for Moving Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007: 1-8
[13]
Tao L M, Wang Q F, Di H J. Markov Random Field in Visual Information Processing. Journal of Image and Graphics, 2009, 14(9): 1705-1711 (in Chinese) (陶霖密,王奇凡,邸慧军.视觉信息处理中的马尔科夫随机场.中国图象图形学报, 2009, 14(9): 1705-1711)
[14]
Li S Z. Markov Random Field Models in Computer Vision // Proc of the 3th European Conference on Computer Vision. Stockholm, Sweden, 1994, II: 361-370
[15]
Vezhnevets V, Sazonov V, Andreeva A. A Survey on Pixel-Based Skin Color Detection Techniques // Proc of the 13th International Conference of Computer Graphics and Visualization Graphicon. Moscow, Russia, 2004: 85-92
[16]
Lee J S, Kuo Y M, Chung P C, et al. Naked Image Detection Based on Adaptive and Extensible Skin Color Model. Pattern Recognition, 2007, 40(8): 2261-2270
[17]
Zhao C, Wang X G, Cham W K. Background Subtraction via Robust Dictionary Learning. EURASIP Journal on Image and Video Processing, 2011. DOI:10.1155/2011/972961
[18]
Kim K, Chalidabhongse T H, Harwood D , et al. Real-Time Foreground-Background Segmentation Using Codebook Model. Real-Time Imaging, 2005, 11(3): 172-185
[19]
Fang X Y, He B, Luo B. New Codebook Model Based on HSV Color Space. Journal of Computer Applications, 2011, 31(9): 2497-2501 (in Chinese)(方贤勇,贺 彪,罗 斌.一种基于HSV颜色空间的新码书模型.计算机应用, 2011, 31(9): 2497-2501)
[20]
Li X F, Mei Z H. An Algorithm of Background Extraction Based on Statistics of Histogram Combining with Multi-Frame Average. Journal of Nanjing University of Posts and Telecommunications: Natural Science, 2008, 28(6): 74-77 (in Chinese)(李晓飞,梅中辉. 一种基于直方图统计与多帧平均混合的背景提取算法.南京邮电大学学报:自然科学版, 2008, 28(6): 74-77)
[21]
Heikkila M, Pietikainen M. A Texture-Based Method for Modeling the Background and Detecting Moving Objects. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662