全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于特征选择和点互信息剪枝的产品属性提取方法*

DOI: 10.16451/j.cnki.issn1003-6059.201502012, PP. 187-192

Keywords: 情感分析,产品属性提取,l1-norm正则化,点互信息剪枝

Full-Text   Cite this paper   Add to My Lib

Abstract:

产品属性的自动抽取是情感分析中的重要研究内容.文中提出一种基于特征选择和词频及点互信息剪枝的产品属性提取方法.首先引入在分类任务中常用的l1-norm正则化(Lasso)方法,将产品属性抽取问题转换为分类中的特征选择问题,利用Lasso生成稀疏模型的特性,将模型中少量的特征作为产品特征属性候选集.然后根据候选特征属性集中的特征属性在文本中出现的频率进行排序并剪枝.最后经过进一步合并和点互信息剪枝处理,得到最终的产品属性集.在中文产品评论集上的实验证实文中方法的有效性.

References

[1]  Hatzivassiloglou V, McKeown K R. Predicting the Semantic Orientation of Adjectives // Proc of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the Association for Computational Linguistics. Madrid, Spain, 1997: 174-181
[2]  Zhao Y Y, Qin B, Liu T. Sentiment Analysis. Journal of Software, 2010, 21(8): 1834-1848 (in Chinese)(赵妍妍,秦 兵,刘 挺.文本情感分析.软件学报, 2010, 21(8): 1834-1848)
[3]  Yang H. Research on the Opinion Mining and Hidden Sentiment Inclination for the Web Text. Ph.D Dissertation. Changchun, China: Jilin University, 2011 (in Chinese)(杨 卉.Web文本观点挖掘及隐含情感倾向的研究.博士学位论文.长春:吉林大学, 2011)
[4]  Popescu A M, Etzioni O. Extracting Product Features and Opinions from Reviews // Proc of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing. Vancouver, Canada, 2005: 339-346
[5]  Hu M Q, Liu B. Mining and Summarizing Customer Reviews // Proc of the 10th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining. Seattle, USA, 2004: 168-177
[6]  Qiu G, Liu B, Bu J J, et al. Expanding Domain Sentiment Lexicon through Double Propagation // Proc of the 21st International Joint Conference on Artificial Intelligence. Pasadena, USA, 2009: 1199-1204
[7]  Zhang L, Liu B, Lim S H, et al. Extracting and Ranking Product Features in Opinion Documents // Proc of the 23rd International Conference on Computational Linguistics. Beijing, China, 2010: 1462-1470
[8]  Hu K Y, Lu Y C, Zhou L Z, et al. Integrating Classification and Association Rule Mining: A Concept Lattice Framework // Proc of the 7th International Workshop on New Directions in Rough Sets, Data Mining, and Granular Soft Computing. Yamaguchi, Japan, 1999: 443-447
[9]  Turney P D. Thumbs up or Thumbs down? Semantic Orientation Applied to Unsupervised Classification of Reviews // Proc of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, USA, 2002: 417-424
[10]  Titov I, McDonald R. A Joint Model of Text and Aspect Ratings for Sentiment Summarization // Proc of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Columbus, USA, 2008: 308-316
[11]  Titov I, McDonald R. Modeling Online Reviews with Multi-grain Topic Models // Proc of the 17th International Conference on World Wide Web. Beijing, China, 2008: 111-120
[12]  Sauper C, Barzilay R. Automatic Aggregation by Joint Modeling of Aspects and Values. Journal of Artificial Intelligence Research, 2013, 46: 89-127
[13]  Wolberg J. Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments. Berlin, Germany: Springer, 2005
[14]  Genkin A, Lewis D D, Madigan D. Large-Scale Bayesian Logistic Regression for Text Categorization. Technometrics, 2007, 49(3): 291-304

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133