全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

适应性结构保持约束下的目标跟踪方法*

DOI: 10.16451/j.cnki.issn1003-6059.201502002, PP. 105-115

Keywords: 目标跟踪,结构约束,匹配,状态估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对目标在运动过程中的结构保持特性,提出一种目标结构化外观描述方法.该方法构建区域节点反映目标局部特性,定义区域节点的软/硬结构约束,将目标的局部特性、全局特性及区域节点的空间结构关系统一于目标的结构化描述中.通过匹配帧间局部区域的尺度不变特征转换流,粗略估计目标运动状态,并利用区域节点的软/硬结构约束对跟踪结果进行约束调整,称为适应性结构保持.公测视频序列的实验表明,相比已有方法,文中方法能更有效跟踪形变、阴影与光照变化下的目标,对目标与背景相似和视频低分辨率等情况也有较高的跟踪性能,具有强鲁棒性和一定的泛化能力.

References

[1]  Yang H X, Shao L, Zheng F, et al. Recent Advances and Trends in Visual Tracking: A Review. Neurocomputing, 2011, 74(18): 3823-3831
[2]  Hou Z Q, Han C Z. A Survey of Visual Tracking. Acta Automatica Sinica, 2006, 32(4): 603-617 (in Chinese)(侯志强,韩崇昭.视觉跟踪技术综述.自动化学报, 2006, 32(4): 603-617)
[3]  Yilmaz A, Javed O, Shah M. Object Tracking: A Survey [EB/OL]. [2014-01-08]. http:// crcv.ucf.edu/papers/Object %20 Tracking.pdf
[4]  Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Par-ticle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Trans on Signal Processing, 2002, 50(2): 174-188
[5]  Yang D W, Cong Y, Tang Y D. Object Tracking Method Based on Particle Filter and Sparse Representation. Pattern Recognition and Artificial Intelligence, 2013, 26(7): 680-687 (in Chinese)(杨大为,丛 杨,唐延东.基于粒子滤波与稀疏表达的目标跟踪方法.模式识别与人工智能, 2013, 26(7): 680-687)
[6]  Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-rigid Objects Using Mean Shift // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA, 2000, II: 142-149
[7]  Ma L, Chang F L, Qiao Y Z. Target Tracking Based on Mean Shift Algorithm and Particle Filtering Algorithm. Pattern Recognition and Artificial Intelligence, 2006, 19(6): 787-793 (in Chinese)(马 丽,常发亮,乔谊正.基于均值漂移算法和粒子滤波算法的目标跟踪.模式识别与人工智能, 2006, 19(6): 787-793)
[8]  Nguyen H T, Smeulders A W M. Robust Tracking Using Foreground-Background Texture Discrimination. International Journal of Computer Vision, 2006, 69(3): 277-293
[9]  Grabner H, Grabner M, Bischof H. Real-Time Tracking via On-line Boosting[EB/OL]. [2014-02-28]. http://www.vision.ee.ethz.ch/~hegrabne/papers/Grabner2006Real-TimeTrackingvia.pdf
[10]  Avidan S. Ensemble Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261-271
[11]  Sevilla-Lara L, Learned-Miller E. Distribution Fields for Tracking // Proc.of the IEEE Conference on Computer Vision and Pattern Reeognition. Providence, USA, 2012: 1910-1917
[12]  Adam A, Rivlin E, Shimshoni I. Robust Fragments-Based Tracking Using the Integral Histogram // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, I: 798-805
[13]  Mei X, Ling H B. Robust Visual Tracking Using l1 Minimization // Proc of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan, 2009: 1436-1443
[14]  Zhang S P, Yao H X, Sun X, et al. Sparse Coding Based Visual Tracking: Review and Experimental Comparison. Pattern Recognition, 2013, 46(7): 1772-1788
[15]  Ross D A, Lim J, Lin R S, et al. Incremental Learning for Robust Visual Tracking. International Journal of Computer Vision, 2008, 77(1/2/3): 125-141
[16]  Ng A Y, Jordan M I. On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Nave Bayes [EB/OL]. [2014-02-28]. http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes.pdf
[17]  Logothetis N K, Sheinberg D L. Visual Object Recognition. An-nual Review of Neuroscience, 1996, 19: 577-621
[18]  Felzenszwalb P F, Girshick R B, McAllester D, et al. Object Detection with Discriminatively Trained Part-Based Models. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645
[19]  Quattoni A, Collins M, Darrell T. Conditional Random Fields for Object Recognition [EB/OL]. [2014-01-08]. http: // papers.nips.cc/paper/2652-conditional-random-fields-for-object-recognition.pdf
[20]  Liu C, Yuen J, Torralba A. SIFT Flow: Dense Correspondence across Scenes and Its Applications. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33(5): 978-994
[21]  Murphy K P, Weiss Y, Jordan M I. Loopy Belief Propagation for Approximate Inference: An Empirical Study // Proc of the 15th Conference on Uncertainty in Artificial Intelligence. Stockholm, Sweden, 1999: 467-475
[22]  Zhang K H, Zhang L, Yang M H. Real-Time Compressive Trac-king // Proc of the 12th European Conference on Computer Vision. Florence, Italy, 2012,Ⅲ: 864-877
[23]  Oron S, Bar-Hillel A, Levi D, et al. Locally Orderless Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 1940-1947
[24]  Wu Y, Lim J, Yang M H. Online Object Tracking: A Benchmark // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 2411-2418
[25]  Everingham M, Van Gool L, Williams C K I, et al. The PASCAL Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 2010, 88(2): 303-338
[26]  Babenko B, Yang M H, Belongie S. Robust Object Tracking with Online Multiple Instance Learning. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133