全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

融合后验概率置信度的动态匹配词格检索*

DOI: 10.16451/j.cnki.issn1003-6059.201502008, PP. 155-161

Keywords: 检测,动态匹配词格检索(DMLS),最小编辑距离,后验概率置信度

Full-Text   Cite this paper   Add to My Lib

Abstract:

在基于动态匹配词格检索(DMLS)的关键词检测系统中,应用最小编辑距离作为关键词检出的置信度,在提高检出率的同时也增加虚警率.针对此问题,文中提出融合后验概率置信度的动态匹配词格检索方法.该方法首先将基于Lattice的后验概率引入到DMLS的索引建立中,其次应用数据驱动的音素替换、插入和删除代价,实现更灵活的近似匹配,最后通过联合最小编辑距离和后验概率置信度得分进行关键词检测.实验表明,最小编辑距离和后验概率置信度具有一定的互补性,系统的等错误率相对降低.

References

[1]  Wang B X, Qu D, Peng X. Practical Fundamentals of Speech Re-cognition. Beijing, China: National Defense Industry Press, 2005 (in Chinese)(王炳锡,屈 丹,彭 煊.实用语音识别基础.北京:国防工业出版社, 2005)
[2]  Sun C L. A Study of Speech Keyword Recognition Technology. Ph.D Dissertation. Beijing, China: Beijing University of Posts and Telecommunications, 2008 (in Chinese)(孙成立.语音关键词识别技术的研究.博士学位论文.北京:北京邮电大学, 2008)
[3]  Pan Y C, Lee L S. Performance Analysis for Lattice-Based Speech Indexing Approaches Using Words and Subword Units. IEEE Trans on Audio, Speech, and Language Processing, 2010, 18(6): 1562-1574
[4]  Akbacak M, Burget L, Wang W, et al. Rich System Combination for Keyword Spotting in Noisy and Acoustically Heterogeneous Audio Streams // Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada, 2013: 8267-8271
[5]  Thambiratmam K, Sridharan S. Rapid Yet Accurate Speech Ind-exing Using Dynamic Match Lattice Spotting. IEEE Trans on Audio, Speech, and Language Processing, 2007, 15(1): 346-357
[6]  Audhkhasi K, Verma A. Keyword Search Using Modified Minimum Edit Distance Measure // Proc of the IEEE International Conference on Acoustic, Speech and Signal Processing. Honolulu, USA, 2007, IV: 929-932
[7]  Wallace R, Vogt R, Sridharan S. Spoken Term Detection Using Fast Phonetic Decoding // Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, China, 2009: 4881-4884
[8]  Rajabzadeh M, Tabibian S, Akbari A, et al. Improved Dynamic Match Phone Lattice Search Using Viterbi Scores and Jaro Winkler Distance for Keyword Spotting System // Proc of the 16th CSI International Symposium on Artificial Intelligence and Signal Processing. Shiraz, Iran, 2012: 423-427
[9]  Wessel F, Schluter R, Macherey K, et al. Confidence Measures for Large Vocabulary Continuous Speech Recognition. IEEE Trans on Speech and Audio Processing, 2001, 9(3): 288-298
[10]  Li W X, Qu D, Li B C, et al. Confidence Measure Based on Time and Boundary Features for Speech Keyword Spotting System. Journal of Applied Sciences, 2012, 30(6): 588-594 (in Chinese)(李文昕,屈 丹,李弼程,等.语音关键词检测系统中基于时长和边界信息的置信度.应用科学学报, 2012, 30(6): 588-594)
[11]  Schwarz P. Phoneme Recognition Based on Long Temporal Context. [EB/OL].[2013-08-10].http://www.fit.vutbr.cz/reach/groups/speech/publi/2009/schwarz-thesis.pdf
[12]  Tüske Z, Plahl C, Schlüter R. A Study on Speaker Normalized MLP Features in LVCSR // Proc of the 12th Annual Conference of the International Speech Communication Association. Florence, Italy, 2011: 1089-1092
[13]  Wallace R. Fast and Accurate Phonetic Spoken Term Detection. Ph.D Dissertation. Brisbane, Australia: Queensland University of Technology, 2010
[14]  Li J, Guo W, Dai L R. Space Transformation Based on Signal Subspace in Joint Factor Analysis. Pattern Recognition and Artificial Intelligence, 2013, 26(8): 705-710 (in Chinese)(李 晋,郭 武,戴礼荣.联合因子分析算法中基于信号子空间的空间变换方法.模式识别与人工智能, 2013, 26(8): 705-710)
[15]  Fiscus J G, Ajot J S, Garofolo J, et al. Results of the 2006 Spoken Term Detection Evaluation[EB/OL].[2013-09-25]. http://www.itl.nist.gov/iad/mig//publications/storage_paper/Interspeech07-STD06-v13.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133