全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分形变异因子修正的差分进化算法*

DOI: 10.16451/j.cnki.issn1003-6059.201502005, PP. 132-138

Keywords: Hurst指数,分形,差分进化,分形布朗运动

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高差分进化算法的求解精度,其变异策略应适应目标函数整体变化趋势和随机变化部分.文中提出利用不同的Hurst指数的分形布朗运动改进差分进化算法变异策略,进而构建分形变异因子修正的差分进化算法.针对该算法应用CEC2005进化计算国际会议提出的25个标准测试函数进行测试,至少有10个测试函数的计算结果优于其他差分进化算法,其余测试结果大部分相近,因此文中算法能提高优化问题的求解精度和适应性.

References

[1]  Price K, Storn R, Lampinen J A. Differential Evolution: A Practical Approach to Global Optimization. New York, USA: Springer, 2005
[2]  Storn R, Price K. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 1997, 11(4): 341-359
[3]  Ye H T, Luo F, Xu Y G. Differential Evolution for Solving Multi-objective Optimization Problems: A Survey of the State-of-the-Art. Control Theory & Applications, 2013, 30(7): 922-928
[4]  Eiben A E, Hinterding R, Michalewicz Z. Parameter Control in Evo-lutionary Algorithms. IEEE Trans on Evolutionary Computation, 1999, 3(2): 124-141
[5]  Ronkkonen J, Kukkonen S, Price K V. Real-Parameter Optimization with Differential Evolution // Proc of the IEEE Congress on Evo-lutionary Computation. Edinburgh, UK, 2005, I: 506-513
[6]  Qin A K, Huang V L, Suganthan P N. Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization. IEEE Trans on Evolutionary Computation, 2009, 13(2): 398-417
[7]  Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition-Based Differential Evolution. IEEE Trans on Evolutionary Computation, 2008, 12(1): 64-79
[8]  Das S, Abraham A, Chakraborty U K, et al. Differential Evolution Using a Neighborhood-Based Mutation Operator. IEEE Trans on Evo-lutionary Computation, 2009, 13(3): 526-553
[9]  Fan H Y, Lampinen J. A Trigonometric Mutation Operation to Di-fferential Evolution. Journal of Global Optimization, 2003, 27(1): 105-129
[10]  Liu G, Li Y X. Novel Oppositional Differential Evolution Algorithm Based on Theory of Molecular Motion. Journal of Chinese Computer Systems, 2012, 33(1): 115-120 (in Chinese)(刘 罡,李元香.分子动理论的新型反向差分演化算法.小型微型计算机系统, 2012, 33(1): 115-120)
[11]  Feoktistov V, Janaqi S. Generalization of the Strategies in Differential Evolution [EB/OL].[2014-01-02]. http:// ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1303160 &tag=1
[12]  Mezura-Montes E, Velázquez-Reyes J, Coello Coello C A. A Comparative Study of Differential Evolution Variants for Global Optimization // Proc of the 8th Annual Conference on Genetic and Evolutionary Computation. Seattle, USA, 2006: 485-492
[13]  Zhang J Q, Sanderson A C. JADE: Adaptive Differential Evolution with Optional External Archive. IEEE Trans on Evolutionary Computation, 2009, 13(5): 945-958
[14]  Wang Y, Cai Z X, Zhang Q F. Differential Evolution with Composite Trial Vector Generation Strategies and Control Parameters. IEEE Trans on Evolutionary Computation, 2011, 15(1): 55-66
[15]  Xiang W L, Ma S F, An M Q. Adaptive Multiple Strategy Diffe-rential Evolution Algorithm with Guiding Scheme of Pbest. Pattern Recognition and Artificial Intelligence, 2013, 26(8): 711-721 (in Chinese)(向万里,马寿峰,安美清.具有Pbest引导机制的适应性多策略差分进化算法.模式识别与人工智能, 2013, 26(8): 711-721)
[16]  Mandelbrot B B. The Fractal Geometry of Nature. New York, USA: W H Freeman, 1982
[17]  Florindo J B, Bruno O M. Closed Contour Fractal Dimension Estimation by the Fourier Transform. Chaos, Solitons and Fractals, 2011, 44(10): 851-861
[18]  Shaghaghian M R. Fractal Dimension: An Index to Quantify Parameters in Genetic Algorithms[EB/OL]. [2014-01-01]. http://waset.org/publications/6312/fractal-dimension-an-index-to-quantify-parameters-in-genetic-algorithms
[19]  Hu Y Z, Oksendal B. Fractional White Noise Calculus and Applications to Finance. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2003, 6(1): 1-32
[20]  Abry P, Sellan F. The Wavelet-Based Synthesis for Fractional Brownian Motion Proposed by F Sellan and Y Meyer: Remarks and Fast Implementation. Applied and Computational Harmonic Analysis, 1996, 3(4): 377-383
[21]  Suganthan P N, Hansen N, Liang J J, et al. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Technical Report, KanGAL #2005005. Singapore, Singapore: Nanyang Technological University, 2005
[22]  Siegel S. Nonparametric Statistics for the Behavioral Sciences. New York, USA: McGraw-Hill Humanities, 1956

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133