全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三种基于不同模糊否定的模糊拒取式推理及其算法*

DOI: 10.16451/j.cnki.issn1003-6059.201502001, PP. 97-104

Keywords: 模糊拒取式推理(FMT),矛盾否定,对立否定,中介否定,模糊拒取式推理算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

模糊拒取式推理(FMT)是模糊推理中最基本的推理形式之一,FMT的一个前提——模糊否定在推理中较重要.文中基于区分矛盾否定、对立否定和中介否定的模糊命题逻辑形式系统(FLCOM),证明矛盾否定、对立否定和中介否定是3种不同的模糊否定,提出与FMT不同的,分别基于矛盾否定、对立否定和中介否定的3种模糊拒取式推理FMT1、FMT2和FMT3.此外,基于R-蕴涵算子IR定义一种与IR关联的NR-蕴涵算子INR,并依据FMT的算法给出FMT1、FMT2和FMT3的算法,证明FMT1、FMT2和FMT3的算法在I≤INR条件下是还原算法.

References

[1]  [1] Mas M, Monserrat M, Torrens J, et al. A Survey on Fuzzy Implication Functions. IEEE Trans on Fuzzy Systems, 2007, 15(6): 1107-1121
[2]  [2] Mas M, Monserrat M, Torrens J. Modus Ponens and Modus Tollens in Discrete Implications. International Journal of Approximate Reasoning, 2008, 49 (2): 422-435
[3]  [3] Trillas E, Alsina C, Renedo E, et al. On ContraSymmetry and MPT Conditionality in Fuzzy Logic. International Journal of Intelligent Systems, 2005, 20(3): 313-326
[4]  [4] Baczynski M, Jayaram B. Fuzzy Implications. Berlin, Germany: Springer, 2008
[5]  [5] Wang G J. On the Logic Foundation of Fuzzy Reasoning. Information Sciences, 1999, 117 (1/2): 47-88
[6]  [6] Zadeh L A. Fuzzy Sets. Information and Control, 1965, 8(3): 338-353
[7]  [7] Atanassov K T. Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 1986, 20(1): 87-96
[8]  [8] Pawlak Z. Rough Sets. International Journal of Computer and Information Sciences, 1982, 11(5): 341-356
[9]  [9] Hájek P. Metamathematics of Fuzzy Logic. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1998
[10]  [10] Pan Z H. A New Cognition and Processing on Contradictory Knowledge // Proc of the IEEE International Conference on Machine Learning and Cybernetics. Dalian, China, 2006, III: 1532-1537
[11]  [11] Wagner G. Web Rules Need Two Kinds of Negation // Proc of the International Workshop on Principles and Practice of Semantic Web Reasoning. Mumbai, India, 2003: 33-50
[12]  [12] Ferré S. Negation, Opposition, and Possibility in Logical Concept Analysis // Proc of the 4th International Conference on Formal Concept Analysis. Dresden, Germany, 2006: 130-145
[13]  [13] Kaneiwa K. Description Logics with Contraries, Contradictories, and Subcontraries. New Generation Computing, 2007, 25(4): 443-468
[14]  [14] Pan Z H. A Logic Description on Different Negation Relation in Knowledge // Proc of the 4th International Conference on Intelligent Computing. Shanghai, China, 2008: 815-823
[15]  [15] Pan Z H, Wang C, Zhang L J. Three Kinds of Negations in Fuzzy Knowledge and Their Applications to Decision Making in Financial Investment // Proc of the 2nd International Conference on Computational Collective Intelligence: Technologies and Applications. Gaoxiong, China, 2010, II: 391-401
[16]  [16] Pan Z H, Yang L, Xu J. Fuzzy Set with Three Kinds of Negations and Its Applications in Fuzzy Decision Making // Proc of the 3rd International Conference on Artificial Intelligence and Computational Intelligence. Taiyuan, China, 2011, I: 533-542
[17]  [17] Pan Z H. Three Kinds of Negation of Fuzzy Knowledge and Their Base of Set. Chinese Journal of Computers, 2012, 35(7): 1421-1428 (in Chinese) (潘正华.模糊知识的三种否定及其集合基础.计算机学报, 2012, 35(7): 1421-1428)
[18]  [18] Pan Z H. Three Kinds of Negation of Fuzzy Knowledge and Their Base of Logic // Proc of the 9th International Conference on Intelligent Computing Theories and Technology. Nanning, China, 2013: 83-93

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133