Zhang X G. Pattern Recognition. 3rd Edition. Beijing, China: Tsinghua University Press, 2010 (in Chinese) (张学工.模式识别.第三版.北京:清华大学出版社, 2010)
[2]
Boutemedjet S, Bouguila N, Ziou D. A Hybrid Feature Extraction Selection Approach for High-Dimensional Non-Gaussian Data Clustering. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(8): 1429-1443
[3]
Boutsidis C, Mahoney M W, Drineas P. Unsupervised Feature Selection for Principal Components Analysis // Proc of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, USA, 2008: 61-69
[4]
Cai D, He X F, Han J W. Sparse Projections over Graph // Proc of the 21st AAAI Conference on Artificial Intelligence. Chicago, USA, 2008: 610-615
[5]
Xu Z L, King I, Lyu M R T, et al. Discriminative Semi-Supervised Feature Selection via Manifold Regularization. IEEE Trans on Neural Networks, 2010, 21(7): 1033-1047
[6]
Chen H, Guo G D. Novel Dual Ensemble Based Semi-Supervised Feature Selection Method. Journal of Chinese Computer Systems, 2010, 31(8): 1604-1608(in Chinese) (陈 红,郭躬德.一种新的双重融合的半监督特征选择算法.小型微型计算机系统, 2010, 31(8): 1604-1608)
[7]
Tohti T, Patta A, Hamdulla A. Unsupervised Uyghur Segmentation and Unsupervised Feature Selection. Pattern Recognition and Artificial Intelligence, 2013, 26(9): 845-852 (in Chinese) (吐尔地·托合提,艾克白尔·帕塔尔,艾斯卡尔·艾木都拉.维吾尔文无监督自动切分及无监督特征选择.模式识别与人工智能, 2013, 26(9): 845-852)
[8]
Xu J L, Zhou Y M, Chen L, et al. An Unsupervised Feature Selection Approach Based on Mutual Information. Journal of Computer Research and Development, 2012, 49(2): 372-382 (in Chinese) (徐峻岭,周毓明,陈 林,等.基于互信息的无监督特征选择.计算机研究与发展, 2012, 49(2): 372-382)
[9]
Zhang L, Sun G, Guo J. Unsupervised Feature Selection Method Based on K-means Clustering. Application Research of Computers, 2005, 22(3): 23-24,42 (in Chinese) (张 莉,孙 钢,郭 军.基于K-均值聚类的无监督的特征选择方法.计算机应用研究, 2005, 22(3): 23-24,42)
[10]
Qin Q W, Liang J Y, Qian Y H. Clustering Feature Selection Method Based on Neighborhood Distance. Computer Science, 2012, 39(1): 175-177 (in Chinese)(秦奇伟,梁吉业,钱宇华.一种基于邻域距离的聚类特征选择方法.计算机科学, 2012, 39(1): 175-177)
[11]
He X F, Cai D, Niyogi P. Laplacian Score for Feature Selection // Proc of the Advances in Neural Information Processing Systems 18. Vancouver, Canada, 2005: 507-514
[12]
Cai D, Zhang C Y, He X F. Unsupervised Feature Selection for Multi-cluster Data // Proc of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2010: 333-342
[13]
Zhang Q, Lin Y Y, Yu G X. New Filter Method for Feature Selection Based on Graph. Computer Engineering and Applications, 2011, 47(26): 186-188 (in Chinese)(张 齐,林媛媛,余国先.一种基于图的特征选择方法.计算机工程与应用, 2011, 47(26): 186-188)
[14]
Pan F, Wang J D, Niu B. Unsupervised Feature Selection Approach Based on Spectral Analysis. Journal of Computer Applications, 2011, 31(8): 2108-2110,2114 (in Chinese)(潘 锋,王建东,牛 奔.基于谱分析的无监督特征选择算法.计算机应用, 2011, 31(8): 2108-2110,2114)
[15]
Li Z C, Yang Y, Liu J, et al. Unsupervised Feature Selection Using Nonnegative Spectral Analysis // Proc of the 26th AAAI Conference on Artificial Intelligence. Toronto, Canada, 2012: 1026-1032
[16]
Zhu X F, Huang Z, Yang Y, et al. Self-Taught Dimensionality Reduction on the High-Dimensional Small-Sized Data. Pattern Recognition, 2013, 46(1): 215-229
[17]
He X F, Niyogi P. Locality Preserving Projections // Proc of the Advances in Neural Information Processing Systems 16.Vancouver, Canada, 2003: 153-160
[18]
Tibshirani R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 1996: 58(1): 267-288
[19]
Natarajan B K. Sparse Approximate Solutions to Linear Systems. SIAM Journal on Computing, 1995, 24(2): 227-234
[20]
Kim S J, Koh K, Lustig M, et al. An Interior-Point Method for Large-Scale l1-Regularized Least Squares. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 606-617
[21]
Yang J F, Zhang Y. Alternating Direction Algorithms for l1-Problems in Compressive Sensing. SIAM Journal on Scientific Computing, 2011, 33(1): 250-278
[22]
Liu B, Fang B, Liu X W, et al. Large Margin Subspace Learning for Feature Selection. Pattern Recognition, 2013, 46(10): 2798-2806
[23]
Khan J, Wei J S, Ringner M, et al. Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Networks. Nature Medicine, 2001, 7(6): 673-679
[24]
Bhattacharjee A, Richards W G, Staunton J, et al. Classification of Human Lung Carcinomas by mRNA Expression Profiling Reveals Distinct Adenocarcinoma Subclasses. Proceedings of the National Academy of Sciences, 2001, 98(24): 13790-13795
[25]
Singh D, Febbo P G, Ross K, et al. Gene Expression Correlates of Clinical Prostate Cancer Behavior. Cancer Cell, 2002, 1(2): 203-209
[26]
Shipp M A, Ross K N, Tamayo P, et al. Diffuse Large B-Cell Lymphoma Outcome Prediction by Gene-Expression Profiling and Supervised Machine Learning. Nature Medicine, 2002, 8(1): 68-74
[27]
Cai D, He X F, Wu X Y, et al. Non-negative Matrix Factorization on Manifold // Proc of the 8th IEEE International Conference on Data Mining. Plsa, Italy, 2008: 63-72