全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

灰度差能量函数引导的图像分割自适应C-V模型*

DOI: 10.16451/j.cnki.issn1003-6059.201503004, PP. 214-222

Keywords: C-V活动轮廓模型,灰度差能量引导函数,图像分割,轮廓曲线

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为几何活动轮廓模型(GACM)的一个标志性模型,C-V模型在图像分割应用中因具有对目标遮挡和边缘噪声的鲁棒性而受到关注.然而该模型通常不能较好地处理复杂的异质图像,并且有对演化曲线的初始位置较为敏感和计算复杂度高等弱点.依据演化曲线内、外区域平均灰度值差的绝对值越大,演化曲线越靠近准确目标边缘的特性,提出一种基于灰度差能量函数引导的图像分割自适应C-V模型.该模型通过构造基于轮廓曲线内、外区域平均灰度差引导函数自适应地调整演化曲线的运动趋势,使得曲线演化可在一个有效的“窄带”范围内进行,保证轮廓曲线内、外部区域灰度计算的局部均一性,增强对目标细节信息的捕捉能力,同时也在一定程度上提高模型的计算速度和对轮廓曲线初始位置的适应性.大量的仿真实验验证该模型的有效性.

References

[1]  Wang D K, Hou Y Q, Peng J Y. Partial Differential Equations Method in Image Processing. Beijing, China: Science Press, 2008(in Chinese) (王大凯,侯榆青,彭进业.图像处理的偏微分方程方法.北京:科学出版社, 2008)
[2]  Kass M, Witkin A, Terzopoulos D. Snakes: Active Contour Models. International Journal of Computer Vision, 1988, 1(4): 321-331
[3]  Chen B, Lai J H. Active Contour Models on Image Segmentation: A Survey. Journal of Image and Graphics, 2007, 12(1): 11-20 (in Chinese) (陈 波,赖剑煌.用于图像分割的活动轮廓模型综述.中国图象图形学报, 2007, 12(1): 11-20)
[4]  Wang X H, Fang L L. Survey of Image Segmentation Based on Active Contour Model. Pattern Recognition and Artificial Intelligence, 2013, 26(8): 751-760 (in Chinese) (王相海,方玲玲.活动轮廓模型的图像分割方法综述.模式识别与人工智能, 2013, 26(8): 751-760)
[5]  Caselles V, Kimmel R, Saprio G. Geodesic Active Contours. International Journal of Computer Vision, 1997, 22(1): 61-79
[6]  Paragios N, Deriche R. Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation. International Journal of Computer Vision, 2002, 46(3): 223-247
[7]  Kim J, Fisher J W, Yezzi A, et al. A Nonparametric Statistical Method for Image Segmentation Using Information Theory and Curve Evolution. IEEE Trans on Image Processing, 2005, 14(10): 1486-1502
[8]  Herbulot A, Jehan-Besson S, Barlaud M, et al. Shape Gradient for Image Segmentation Using Information Theory // Proc of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Montreal, Canada, 2004, III: 21-24
[9]  Aubert G, Barlaud M, Faugeras O, et al. Image Segmentation Using Active Contours: Calculus of Variations or Shape Gradients? SIAM Journal on Applied Mathematics, 2005, 63(6): 2128-2154
[10]  Tsai A, Yezzi A, Willsky A S. Curve Evolution Implementation of the Mumford-Shah Functional for Image Segmentation, Denoising, Interpolation, and Magnification. IEEE Trans on Image Processing, 2001, 10(8): 1169-1186
[11]  Chan T T, Vese L A. Active Contours without Edges. IEEE Trans on Image Processing, 2001, 10(2): 266-277
[12]  Mumford D, Shah J. Optimal Approximations of Piecewise Smooth Functions and Associated Variational Problems. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-685
[13]  Shi J B, Malik J. Normalized Cuts and Image Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905
[14]  Zhang B, Su Y L, Xu Y F, et al. An Adaptive Geodesic Active Contour Model // Proc of the 6th International Conference on Natural Computation. Yantai, China, 2010, 5: 2267-2270
[15]  Paragios N, Deriche R. Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(3): 266-280
[16]  Zhang J W, Ge Q. MR Image Segmentation of Fast CV Model Based on Local Statistic Information. Journal of Image and Graphics, 2010, 15(1): 69-74(in Chinese)(张建伟,葛 琦.基于局部统计信息的快速CV模型MR图像分割.中国图象图形学报, 2010, 15(1): 69-74)
[17]  Zhu X S, Sun Q S, Xia D S. Adaptive CV Model Using Convex Optimization. Application Research Computers, 2012, 29(2): 779-781 (in Chinese)(朱晓舒,孙权森,夏德深.基于凸优化的自适应CV模型.计算机应用研究, 2012, 29(2): 779-781)
[18]  Li C M, Kao C Y, Gore J C, et al. Minimization of Region-Scalable Fitting Energy for Image Segmentation. IEEE Trans on Image Processing, 2008, 17(10): 1940-1949
[19]  Osher S, Sethian J A. Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics, 1988, 79(1): 12-49
[20]  Xu L L, Xiao J S, Yi B S, et al. An Improved C-V Image Segmentation Method Based on Level Set Model // Proc of the 1st International Conference on Intelligent Networks and Intelligent Systems. Wuhan, China, 2008: 507-510
[21]  Wang Z, Wang Y P, Li S W. Tire Impressions Image Segmentation Algorithm Based on C-V Model without Re-initialization // Proc of the 3rd IEEE International Conference on Communication Software and Networks. Xi′an, China, 2011: 541 - 545
[22]  Xu D, Peng Z M, Yong Y. An Improved Image Segmentation Method Based on Fast Level Set Combining with C-V Model // Proc of the Spring Congress on Engineering and Technology. Xi′an, China, 2012: 1-4
[23]  Wang X H, Li M. Level Set Model for Image Segmentation Based on Dual Contour Evolutional Curve. Journal of Image and Graphics, 2014, 19(3): 373-380 (in Chinese)(王相海,李 明.双重轮廓演化曲线的图像分割水平集模型.中国图象图形学报, 2014, 19(3): 373-380)
[24]  Zhu G P. Image Segmentation Based on Active Contour Model. Ph.D Dissertation. Harbin, China: Harbin Institute of Technology, 2007(in Chinese)(朱国普.基于活动轮廓模型的图像分割.博士学位论文. 哈尔滨:哈尔滨工业大学. 2007)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133