全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有三种否定的模糊命题逻辑形式系统FLCOM的λ-归结*

DOI: 10.16451/j.cnki.issn1003-6059.201503002, PP. 202-208

Keywords: 模糊命题逻辑形式系统,语义解释,λ-归结,完备性

Full-Text   Cite this paper   Add to My Lib

Abstract:

考虑到模糊逻辑中定理自动证明的重要性以及目前主要研究具有一种否定的模糊逻辑的归结原理,文中对具有三种否定(矛盾否定、对立否定和中介否定)的模糊命题逻辑(FLCOM)的归结原理进行研究.基于FLCOM的一种无穷值语义解释提出λ-可满足的和λ-不可满足的概念.将λ-归结方法引入FLCOM,给出FLCOM的λ-归结演绎定义,讨论FLCOM的λ-归结原理,并证明FLCOM的λ-归结方法的完备性.基于λ-归结方法和已证明的结论给出实例以佐证文中λ-归结方法和结论的正确性和可行性.因此,在FLCOM范围内可判定任一模糊命题公式是否是λ-可满足的或λ-不可满足的.

References

[1]  Robinson J A. A Machine-Oriented Logic Based on the Resolution Principle. Journal of the ACM, 1965, 12(1): 23-41
[2]  Slagle J R. Automatic Theorem Proving with Renamable and Semantic Resolution. Journal of the ACM, 1967, 14(4): 687-697
[3]  Lee R C T, Chang C L. Some Properties of Fuzzy Logic. Information and Control, 1971, 19(5): 417-431
[4]  Morgan C G. Resolution for Many-Valued Logics. Logique et Analyse, 1976, 19(74/75/76): 311-339
[5]  Liu X H. Generalized Fuzzy Logic and Lock Semantic Resolution Principle. Chinese Journal of Computers, 1980, 3(2): 97-111 (in Chinese) (刘叙华.广义模糊逻辑和锁语义归结原理.计算机学报, 1980, 3(2): 97-111)
[6]  Liu X H, Xiao H. Operator Fuzzy Logic and Fuzzy Resolution // Proc of the 15th IEEE International Symposium on Multiple-Valued Logic. Kingston, Canada, 1985: 68-75
[7]  Yager R R. Inference in a Multivalued Logic System. International Journal of Man-Machine Studies, 1985, 23(1): 27-44
[8]  Liu X H, Xiao H. Operator Fuzzy Logic and λ-Resolution. Chinese Journal of Computers, 1989, 12(2): 81-91 (in Chinese) (刘叙华,肖 红.算子Fuzzy逻辑和λ-归结方法.计算机学报, 1989, 12(2): 81-91)
[9]  Liu X H, An Z. An Improvement of Operator Fuzzy Logic and Its Resolution Deduction. Chinese Journal of Computers, 1990, 13(12): 890-899 (in Chinese) (刘叙华,安 直.算子Fuzzy逻辑及其归结推理的改进.计算机学报, 1990, 13(12): 890-899)
[10]  Zhu W J, Xiao X A. Predicate Calculus System of Medium Logic (I). Journal of Nanjing University: Natural Sciences, 1988, 24(4): 583-598 (in Chinese)(朱梧槚,肖奚安.中介逻辑的谓词演算系统(I).南京大学学报:自然科学版, 1988, 24(4): 583-598)
[11]  Zhu W J, Xiao X A. Predicate Calculus System of Medium Logic (II). Journal of Nanjing University: Natural Sciences, 1989, 25(2): 165-183 (in Chinese)(朱梧槚,肖奚安.中介逻辑的谓词演算系统(II).南京大学学报:自然科学版, 1989, 25(2): 165-183)
[12]  Qiu W D, Zou J. Resolution Principle of the Medium Predicate Calculus System. Journal of Shanghai Polytechnic University, 1990, 11(2): 5-11 (in Chinese)(邱伟德,邹 晶.中介谓词演算系统MF的归结原理.上海工业大学学报, 1990, 11(2): 5-11)
[13]  Xu Y, Ruan D, Kerre E E, et al. α-Resolution Principle Based on Lattice-Valued Propositional Logic LP(X). Information Science, 2000, 130(1/2/3/4): 195-223
[14]  Xu Y, Ruan D, Kerre E E, et al. α-Resolution Principle Based on First-Order Lattice-Valued Logic LF(X). Information Science, 2001, 132(1/2/3/4): 221-239
[15]  Pan Z H. λ-Resolution of the Medium Predicate Logic System. Journal of Software, 2003, 14(3): 345-349 (in Chinese)(潘正华.中介谓词逻辑系统的λ-归结.软件学报, 2003, 14(3): 345-349)
[16]  Zhang S L, Pan Z H. λ-Resolution for Medium Predicate Logic Based on Improved Form of Infinite-Valued Semantic Interpretation. Journal of Shandong University: Natural Science, 2012, 47(2): 109-114,118 (in Chinese)(张胜礼,潘正华.基于改进的无穷值语义解释的中介谓词逻辑的λ-归结.山东大学学报:理学版, 2012, 47(2): 109-114,118)
[17]  Pan Z H. Three Kinds of Negation of Fuzzy Knowledge and Their Base of Logic // Proc of the 9th International Conference on Intelligent Computing Theories and Technology. Nanning, China, 2013: 83-93
[18]  Pan Z H. Three Kinds of Negation of Fuzzy Knowledge and Their Base of Set. Chinese Journal of Computers, 2012, 35(7): 1421-1428 (in Chinese)(潘正华.模糊知识的三种否定及其集合基础.计算机学报, 2012, 35(7): 1421-1428)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133