Robinson J A. A Machine-Oriented Logic Based on the Resolution Principle. Journal of the ACM, 1965, 12(1): 23-41
[2]
Slagle J R. Automatic Theorem Proving with Renamable and Semantic Resolution. Journal of the ACM, 1967, 14(4): 687-697
[3]
Lee R C T, Chang C L. Some Properties of Fuzzy Logic. Information and Control, 1971, 19(5): 417-431
[4]
Morgan C G. Resolution for Many-Valued Logics. Logique et Analyse, 1976, 19(74/75/76): 311-339
[5]
Liu X H. Generalized Fuzzy Logic and Lock Semantic Resolution Principle. Chinese Journal of Computers, 1980, 3(2): 97-111 (in Chinese) (刘叙华.广义模糊逻辑和锁语义归结原理.计算机学报, 1980, 3(2): 97-111)
[6]
Liu X H, Xiao H. Operator Fuzzy Logic and Fuzzy Resolution // Proc of the 15th IEEE International Symposium on Multiple-Valued Logic. Kingston, Canada, 1985: 68-75
[7]
Yager R R. Inference in a Multivalued Logic System. International Journal of Man-Machine Studies, 1985, 23(1): 27-44
[8]
Liu X H, Xiao H. Operator Fuzzy Logic and λ-Resolution. Chinese Journal of Computers, 1989, 12(2): 81-91 (in Chinese) (刘叙华,肖 红.算子Fuzzy逻辑和λ-归结方法.计算机学报, 1989, 12(2): 81-91)
[9]
Liu X H, An Z. An Improvement of Operator Fuzzy Logic and Its Resolution Deduction. Chinese Journal of Computers, 1990, 13(12): 890-899 (in Chinese) (刘叙华,安 直.算子Fuzzy逻辑及其归结推理的改进.计算机学报, 1990, 13(12): 890-899)
[10]
Zhu W J, Xiao X A. Predicate Calculus System of Medium Logic (I). Journal of Nanjing University: Natural Sciences, 1988, 24(4): 583-598 (in Chinese)(朱梧槚,肖奚安.中介逻辑的谓词演算系统(I).南京大学学报:自然科学版, 1988, 24(4): 583-598)
[11]
Zhu W J, Xiao X A. Predicate Calculus System of Medium Logic (II). Journal of Nanjing University: Natural Sciences, 1989, 25(2): 165-183 (in Chinese)(朱梧槚,肖奚安.中介逻辑的谓词演算系统(II).南京大学学报:自然科学版, 1989, 25(2): 165-183)
[12]
Qiu W D, Zou J. Resolution Principle of the Medium Predicate Calculus System. Journal of Shanghai Polytechnic University, 1990, 11(2): 5-11 (in Chinese)(邱伟德,邹 晶.中介谓词演算系统MF的归结原理.上海工业大学学报, 1990, 11(2): 5-11)
[13]
Xu Y, Ruan D, Kerre E E, et al. α-Resolution Principle Based on Lattice-Valued Propositional Logic LP(X). Information Science, 2000, 130(1/2/3/4): 195-223
[14]
Xu Y, Ruan D, Kerre E E, et al. α-Resolution Principle Based on First-Order Lattice-Valued Logic LF(X). Information Science, 2001, 132(1/2/3/4): 221-239
[15]
Pan Z H. λ-Resolution of the Medium Predicate Logic System. Journal of Software, 2003, 14(3): 345-349 (in Chinese)(潘正华.中介谓词逻辑系统的λ-归结.软件学报, 2003, 14(3): 345-349)
[16]
Zhang S L, Pan Z H. λ-Resolution for Medium Predicate Logic Based on Improved Form of Infinite-Valued Semantic Interpretation. Journal of Shandong University: Natural Science, 2012, 47(2): 109-114,118 (in Chinese)(张胜礼,潘正华.基于改进的无穷值语义解释的中介谓词逻辑的λ-归结.山东大学学报:理学版, 2012, 47(2): 109-114,118)
[17]
Pan Z H. Three Kinds of Negation of Fuzzy Knowledge and Their Base of Logic // Proc of the 9th International Conference on Intelligent Computing Theories and Technology. Nanning, China, 2013: 83-93
[18]
Pan Z H. Three Kinds of Negation of Fuzzy Knowledge and Their Base of Set. Chinese Journal of Computers, 2012, 35(7): 1421-1428 (in Chinese)(潘正华.模糊知识的三种否定及其集合基础.计算机学报, 2012, 35(7): 1421-1428)