全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多任务最小软阈值回归方法的目标跟踪*

DOI: 10.16451/j.cnki.issn1003-6059.201503005, PP. 223-230

Keywords: 子空间学习,模型表示,多任务,目标跟踪

Full-Text   Cite this paper   Add to My Lib

Abstract:

在视频跟踪中,模型表示是直接影响跟踪效率的核心问题之一.在随时间和空间变化的复杂数据中学习目标外观模型表示所需的有效模板,从而适应内在或外在因素所引起的目标状态变化是非常重要的.文中详细描述较为鲁棒的目标外观模型表示策略,并提出一种新的多任务最小软阈值回归跟踪算法(MLST).该算法框架将候选目标的观测模型假设为多任务线性回归问题,利用目标模板和独立同分布的高斯-拉普拉斯重构误差线性表示候选目标不同状态下的外观模型,从而跟踪器能够很好地适应各种复杂场景并准确预测每一时刻的真实目标状态.大量实验证明,文中在线学习策略能够充分挖掘目标在不同时刻的特殊状态信息以提高模型表示精度,使得跟踪器保持最佳的状态,从而在一定程度上提高跟踪性能.实验结果显示,本文算法体现较好的鲁棒性并优于一些目前较先进的跟踪算法.

References

[1]  Jepson A D, Fleet D J, El-Maraghi T F. Robust Online Appearance Models for Visual Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1296-1311
[2]  Ross D A, Lim J, Lin R S, et al. Incremental Learning for Robust Visual Tracking. International Journal of Computer Vision, 2008, 77(1/2/3): 125-141
[3]  Li H X, Shen C H, Shi Q F. Real-Time Visual Tracking Using Compressive Sensing // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2011: 1305-1312
[4]  Mei X, Ling H B. Robust Visual Tracking and Vehicle Classification via Sparse Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272
[5]  Avidan S. Support Vector Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064-1072
[6]  Wang Q, Chen F, Xu W L, et al. Online Discriminative Object Tracking with Local Sparse Representation//Proc of the IEEE Workshop on Applications of Computer Vision. Breckenridge, USA, 2012: 425-432
[7]  Xie Y, Zhang W S, Li C H. et al. Discriminative Object Tracking via Sparse Representation and Online Dictionary Learning. IEEE Trans on Cybernetics, 2014, 44(4): 539-553
[8]  Babenko B, Yang M H, Belongie S. Robust Object Tracking with Online Multiple Instance Learning. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632
[9]  Yilmaz A, Javed O, Shah M. Object Tracking: A Survey. ACM Journal of Computing Surveys, 2006, 38(4): 1-45
[10]  Wang D, Lu H C, Yang M H. Least Soft-Threshold Squares Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 2371-2378
[11]  Caruana R. Multitask Learning. Machine Learning, 1997, 28(1): 41-75
[12]  Zhang T Z, Ghanem B, Liu S, et al. Robust Visual Tracking via Multi-Task Sparse Learning // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 2042-2049
[13]  Boyd S, Parikh N, Chu E, et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122
[14]  Liu G C, Lin Z C, Yan S C, et al. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184
[15]  Lin Z C, Chen M M, Ma Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. [EB/OL]. [2013-10-18]. http://arxiv.org/pdf/1009.5055v3.pdf
[16]  Babenko B, Yang M H, Belongie S. Visual Tracking with Online Multiple Instance Learning // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 983-990
[17]  Kwon J, Lee K M. Visual Tracking Decomposition // Proc of the 23rd IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 1269-1276
[18]  Zhong W, Lu H C, Yang M H. Robust Object Tracking via Sparsity-Based Collaborative Model // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 1838-1845
[19]  Jia X, Lu H C, Yang M H. Visual Tracking via Adaptive Structural Local Sparse Appearance Model // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 1822-1829
[20]  Wang D, Lu H C, Yang M H. Online Object Tracking with Sparse Prototypes. IEEE Trans on Image Processing, 2013, 22(1): 314-325

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133