全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

贝叶斯先验约束下的混合判别方法*

DOI: 10.16451/j.cnki.issn1003-6059.201503001, PP. 193-201

Keywords: 混合模型,贝叶斯框架,隐Dirichlet分配模型,场景分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

在有限样本下判别模型对训练样本敏感,易导致分类器学习结果泛化性能较弱,产生过拟合现象.针对上述问题,提出一种贝叶斯先验约束下的混合判别方法.通过在判别计算中引入生成先验分析,构建生成与判别模型在决策层的混合求解框架.该方法采用不同质分类器进行分类预测,并通过定义有效的融合机制进行样本筛选和标签决策,自动扩展训练集以更新模型,弥补训练样本信息的不完全性.有限样本下的场景分类实验结果表明,相比经典算法,该模型能够挖掘出具有高度判别特性的样本,从而进行有效的模型更新,纠正前期由于样本分布不均而导致的错分样本标签,提升场景分类精度.

References

[1]  Benenson R, Mathias M, Timofte R, et al. Pedestrian Detection at 100 Frames per Second // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 2903-2910
[2]  Zhang L, Van Der Maaten L. Structure Preserving Object Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 1838-1845
[3]  Wang Q Z, Kang W W, Wang B. Design of 3D Latent-SVM and Application to Detection of Lesions in Chest CT. Pattern Recognition and Artificial Intelligence, 2013, 26(5): 460-466 (in Chinese) (王青竹,康文炜,王 斌.三维隐SVM算法设计及在胸CT图像病灶检测中的应用.模式识别与人工智能, 2013, 26(5): 460-466)
[4]  Wang G, Forsyth D, Hoiem D. Comparative Object Similarity for Improved Recognition with Few or No Examples // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 3525-3532
[5]  Oyen D, Lane T. Leveraging Domain Knowledge in Multitask Bayesian Network Structure Learning // Proc of the 26th AAAI Conference on Artificial Intelligence. Toronto, Canada, 2012: 1091-1097
[6]  Li L J, Socher R, Li F F. Towards Total Scene Understanding: Classification, Annotation and Segmentation in an Automatic Framework // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 2036-2043
[7]  Larlus D, Verbeek J, Jurie F. Category Level Object Segmentation by Combining Bag-of-words Models with Dirichlet Processes and Random Fields. International Journal of Computer Vision, 2010, 88(2): 238-253
[8]  Fox E B, Sudderth E B, Jordan M I, et al. A Sticky HDP-HMM with Application to Speaker Diarization. The Annals of Applied Statistics, 2011, 5(2A): 1020-1056
[9]  Bosch A, Zisserman A, Muoz X. Scene Classification Using a Hybrid Generative Discriminative Approach. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(4): 712-727
[10]  Holub A D, Welling M, Perona P. Hybrid Generative-Discriminative Visual Categorization. International Journal of Computer Vision, 2008, 77(1/2/3): 239-258
[11]  Fujino A, Ueda N, Saito K. Semisupervised Learning for a Hybrid Generative/ Discriminative Classifier Based on the Maximum Entropy Principle. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(3): 424-437
[12]  Chapelle O, Sch lkopf B, Zien A. Semi-Supervised Learning. Cambridge, USA: MIT Press, 2006
[13]  Kalal Z, Mikolajczyk K, Matas J. Tracking-Learning-Detection. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422
[14]  Gao J, Xie Z, Zhang J, et al. Image Semantic Analysis and Understanding: A Review. Pattern Recognition and Artificial Intelligence, 2010, 23(2): 191-202 (in Chinese)(高 隽,谢 昭,张 骏,等.图像语义分析与理解综述.模式识别与人工智能, 2010, 23(2): 191-202)
[15]  Xun G, Wang H F. The Development of Topic Models in Natural Language Processing. Chinese Journal of Computers, 2011, 34(8): 1423-1436 (in Chinese)(徐 戈,王厚峰.自然语言处理中主题模型的发展.计算机学报, 2011, 34(8): 1423-1436)
[16]  Sudderth E B, Torralba A, Freeman W T, et al. Describing Visual Scenes Using Transformed Objects and Parts. International Journal of Computer Vision, 2008, 77(1/2/3): 291-330
[17]  Sudderth E B, Torralba A, Freeman W T, et al. Learning Hierarchical Models of Scenes, Objects, and Parts // Proc of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005, II: 1331-1338
[18]  Blei D M. Introduction to Probabilistic Topic Models. Communications of the ACM, 2012, 55(4): 77-84
[19]  Lowe D G. Distinctive Image Features from Scale-invariant Keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
[20]  Oliva A, Torralba A. Building the Gist of a Scene: The Role of Global Image Features in Recognition. Progress in Brain Research, 2006, 155: 23-36

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133