Feige U. A Threshold of in n for Approximating Set Cover. Journal of the ACM, 1998, 45(4): 634-652
[2]
Liu Q, Xiang B, Chen E H, et al. Influential Seed Items Recommendation // Proc of the 6th ACM Conference on Recommender Systems. Dublin, Ireland, 2012: 245-248
[3]
Adomavicius G, Kwon Y O. Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques. IEEE Trans on Knowledge and Data Engineering, 2012, 24(5): 896-911
[4]
Herlocker J L, Konstan J A, Terveen L G, et al. Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems, 2004, 22(1): 5-53
[5]
Koren Y. Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model // Proc of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, USA, 2008: 624-634
[6]
Koren Y, Bell R M, Volinsky C. Matrix Factorization Techniques for Recommender Systems. Computer, 2009, 42(8): 30-37
[7]
Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
[8]
Kim K J, Ahn H. A Recommender System Using GA K-Means Clustering in an Online Shopping Market. Expert Systems with Applications, 2008, 34(2): 1200-1209
[9]
Sarwar B M, Karypis G, Konstan J, et al. Recommender Systems for Large-Scale E-Commerce: Scalable Neighborhood Formation Using Clustering. [EB/OL]. [2014-03-20]. Http://glaros.dtc.umn.edu/gkhome/fetch/pagers/clusterICCIT02.pdf
[10]
Ungar L, Foster D. Clustering Methods for Collaborative Filtering. [EB/OL]. [2014-03-18].http://www.aaai.org/Papers/Workshops/1998/WS-98-08/WS98-08-029.pdf
[11]
Liu Q, Chen E H, Xiong H, et al. A Cocktail Approach for Travel Package Recommendation. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2): 278-293
[12]
Tan C, Liu Q, Chen E H, et al. Object-oriented Travel Package Recommendation. ACM Transactions on Intelligent Systems and Technology, 2013, 5(3): 43: 1-43:26
[13]
Lin H, Bilmes J. A Class of Submodular Functions for Document Summarization // Proc of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Portland, USA, 2011: 510-520
[14]
Sipos R, Swaminathan A, Shivaswamy P, et al. Temporal Corpus Summarization Using Submodular Word Coverage // Proc of the 21st ACM International Conference on Information and Knowledge Management. Maui, USA, 2012: 754-763
[15]
Pennacchiotti M, Silvestri F, Vahabi H, et al. Making Your Interests Follow You on Twitter // Proc of the 21st ACM International Conference on Information and Knowledge Management. Maui, USA, 2012: 165-174
[16]
Hammar M, Karlsson R, Nilsson B J. Using Maximum Coverage to Optimize Recommendation Systems in E-Commerce // Proc of the 7th ACM Conference on Recommender Systems. Hong Kong, China, 2013: 265-272
[17]
McNee S M, Riedl J, Konstan J A. Being Accurate is Not Enough: How Accuracy Metrics Have Hurt Recommender Systems // Proc of the Extended Abstracts on Human Factors in Computing Systems. Montreal, Canada, 2006: 1097-1101
[18]
Zhang M, Hurly N. Evaluating the Diversity of Top-N Recommendations // Proc of the 21st International Conference on Tools with Artificial Intelligence. Newark, USA, 2009: 457-460
[19]
Said A, Fields B, Jain B J, et al. User-Centric Evaluation of a K-Furthest Neighbor Collaborative Filtering Recommender Algorithm // Proc of the Conference on Computer Supported Cooperative Work. San Antonio, USA, 2013: 1399-1408
[20]
Zhang F G, Xu S H. Research on Recommendation Diversification in Trust Based E-Commerce Recommender Systems. Journal of the China Society for Scientific and Technical Information, 2010, 29(2): 350-355 (in Chinese)(张富国,徐升华.基于信任的电子商务推荐多样性研究.情报学报, 2010, 29(2): 350-355)
[21]
Cui C Y, Ma J. An Image Tag Recommendation Approach Combining Relevance with Diversity. Chinese Journal of Computers, 2013, 36(3): 654-663 (in Chinese)(崔超然,马 军.一种结合相关性和多样性的图像标签推荐方法.计算机学报, 2013, 36(3): 654-663)
[22]
Park Y J, Tuzhilin A. The Long Tail of Recommender Systems and How to Leverage It // Proc of the ACM conference on Recommender Systems. Lausanne, Switzerland, 2008: 11-18
[23]
Anderson C. The Long Tail. New York, USA: Random House Audiobooks, 2007
[24]
Nemhauser G L, Wolsey L A, Fisher M L. An Analysis of Approximations for Maximizing Submodular Set Functions-I. Mathematical Programming, 1978, 14(1): 265-294
[25]
El-Arini K, Veda G, Shahaf D, et al. Turning Down the Noise in the Blogosphere // Proc of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 289-298
[26]
Krause A, Guestrin C. Submodularity and Its Applications in Optimized Information Gathering. ACM Transactions on Intelligent Systems and Technology, 2011, 2(4): 389-396