Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM, 2008, 51(1): 107-113
[2]
Deng D, Li G L, Hao S, et al. MassJoin: A MapReduce-Based Method for Scalable String Similarity Joins // Proc of the 30th IEEE International Conference on Data Engineering. Chicago, USA, 2014: 340-351
[3]
Bloom B H. Space/Time Trade-offs in Hash Coding with Allowable Errors. Communications of the ACM, 1970, 13(7): 422-426
[4]
Broder A, Mitzenmacher M. Network Applications of Bloom Filters: A Survey. Internet Mathematics, 2004, 1(4): 485-509
[5]
Koutris P. Bloom Filters in Distributed Query Execution [EB/OL]. [2014-01-23]. http://courses.cs.washington.edu/courses/cse544/11wi/projects/koutris.pdf
[6]
Cohen S, Matias Y. Spectral Bloom Filters // Proc of the ACM SIGMOD International Conference on Management of Data. San Diego, USA, 2003: 241-252
[7]
Lin X M, Wang W. Set and String Similarity Queries: A Survey. Chinese Journal of Computers, 2011, 34(10): 1853-1862 (in Chinese)(林学民, 王 炜.集合和字符串的相似度查询.计算机学报, 2011, 34(10): 1853-1862
[8]
Pang J, Gu Y, Xu J, et al. Research Advance on Similarity Join Queries. Journal of Frontiers of Computer Science and Technology, 2013, 7(1): 1-13 (in Chinese)(庞 俊,谷 峪,许 嘉,等.相似性连接查询技术研究进展.计算机科学与探索, 2013, 7(1): 1-13)
[9]
Wang G, Wang B, Yang X C, et al. Efficiently Indexing Large Sparse Graphs for Similarity Search. IEEE Trans on Knowledge and Data Engineering, 2012, 24(3): 440-451
[10]
Cohen J. Graph Twiddling in a MapReduce World. Computing in Science & Engineering, 2009, 11(4): 29-41
[11]
Lattanzi S, Moseley B, Suri S, et al. Filtering: A Method for Solving Graph Problems in MapReduce // Proc of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures. San Jose, USA, 2011: 85-94
[12]
Suri S, Vassilvitskii S. Counting Triangles and the Curse of the Last Reducer // Proc of the 20th International Conference on World Wide Web. Hyderabad, India, 2011: 607-614
[13]
Kang U, Tsourakakis C E, Appel A P, et al. HADI: Mining Radii of Large Graphs. ACM Transactions on Knowledge Discovery from Data, 2011, 5(2): 8.1-8.24
[14]
Bahmani B, Chakrabarti K, Xin D. Fast Personalized Pagerank on MapRreduce // Proc of the ACM SIGMOD International Conference on Management of data. Athens, Greece, 2011: 973-984
[15]
Kang U, Tong H H, Sun J M, et al. Gbase: A Scalable and General Graph Management System // Proc of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, USA, 2011: 1091-1099
[16]
Kang U, Tsourakakis C E, Faloutsos C. Pegasus: A Peta-Scale Graph Mining System Implementation and Observations // Proc of the 9th IEEE International Conference on Data Mining. Miami, USA, 2009: 229-238
[17]
Bahmani B, Kumar R, Vassilvitskii S. Densest Subgraph in Streaming and MapReduce. Proceedings of the VLDB Endowment, 2012, 5(5): 454-465
[18]
Afrati F N, Fotakis D, Ullman J D. Enumerating Subgraph Instances Using Map-Reduce // Proc of the 29th IEEE International Conference on Data Engineering. Brisbane, Australia, 2013: 62-73
[19]
Yan X F, Han J W. gSpan: Graph-Based Substructure Pattern Mining // Proc of the IEEE International Conference on Data Mining. Maebashi, Japan, 2002: 721-724
[20]
Yan X F, Yu P S, Han J W. Graph Indexing: A Frequent Structure-Based Approach // Proc of the ACM SIGMOD International Conference on Management of Data. Paris, France, 2004: 335-346
[21]
He H H, Singh A K. Closure-Tree: An Index Structure for Graph Queries // Proc of the 22nd International Conference on Data Engineering. Atlanta, USA, 2006: 38.1-38.12
[22]
Williams D W, Huan J, Wang W. Graph Database Indexing Using Structured Graph Decomposition // Proc of the 23rd International Conference on Data Engineering. Istanbul, Turkey, 2007: 976-985
[23]
Tian Y Y, Patel J M. Tale: A Tool for Approximate Large Graph Matching // Proc of the 24th IEEE International Conference on Data Engineering. Cancun, Mexico, 2008: 963-972
[24]
Yan X F, Yu P S, Han J W. Substructure Similarity Search in Graph Databases // Proc of the ACM SIGMOD International Conference on Management of Data. Baltimore, USA, 2005: 766-777
[25]
Zhao X, Xiao C, Lin X M, et al. Efficient Graph Similarity Joins with Edit Distance Constraints // Proc of the 28th IEEE International Conference on Data Engineering. Washington, USA, 2012: 834-845
[26]
Sanfeliu A, Fu K S. A Distance Measure between Attributed Relational Graphs for Pattern Recognition. IEEE Trans on Systems, Man and Cybernetics, 1983, SMC-13(3): 353-362
[27]
Bunke H, Allermann G. Inexact Graph Matching for Structural Pattern Recognition. Pattern Recognition Letters, 1983, 1(4): 245-253
[28]
Zeng Z P, Tung A K H, Wang J Y, et al. Comparing Stars: On Approximating Graph Edit Distance // Proc the 35th International Conference on Very Large Data Bases. Lyon, France, 2009: 25-36