全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于自适应启动策略的混合交叉动态约束多目标优化算法*

DOI: 10.16451/j.cnki.issn1003-6059.201505004, PP. 411-421

Keywords: 动态多目标优化,柯西变异,自适应启动策略,混合交叉算子

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对单独采用冷启动方式而出现再次收敛速度慢、单种交叉算子自适应不足以及正态变异多样性程度偏弱等问题,提出一种基于自适应启动策略的新型混合交叉动态约束多目标优化算法.在算法设计中,首先采用冷热混合方式识别环境动态调整的程度,并引用柯西变异增强多样性;然后混合BLX_α、SBX和DE三种差分进化经典交叉算子,并通过各自贡献度自适应调整其竞争力,以增强交叉操作对环境动态变化的自适应性;最后采用精英与进化两个群体相互协作,进一步均衡算法的局部和全局搜索能力.在6个标准测试函数上的仿真结果表明,该算法能在不同环境下动态识别调整的程度,增加初始种群多样性以提高算法的跟踪效果,且能在同一环境下自适应调整交叉算子以提高算法的收敛速度.

References

[1]  Yang S X, Yao X. Evolutionary Computation for Dynamic Optimization Problems. Berlin, Germany: Springer-Verlag, 2013
[2]  Hong B W, Guo L, Wang C S, et al. Model and Method of Dynamic Multi-objective Optimal Dispatch for Microgrid. Electric Power Automation Equipment, 2013, 33(3): 100-107 (in Chinese) (洪博文,郭 力,王成山,等.微电网多目标动态优化调度模型与方法.电力自动化设备, 2013, 33(3): 100-107)
[3]  Kong W J, Chai T Y, Ding J L, et al. A Real-Time Multiobjective Electric Energy Allocation Optimization Approach for the Smelting Process of Magnesia. Acta Automatica Sinica, 2014, 40(1): 51-61 (in Chinese) (孔维健,柴天佑,丁进良,等.镁砂熔炼过程全厂电能分配实时多目标优化方法研究.自动化学报, 2014, 40(1): 51-61)
[4]  Nguyen T T, Yang S X, Branke J. Evolutionary Dynamic Optimization: A Survey of the State of the Art. Swarm and Evolutionary Computation, 2012, 6: 1-24
[5]  Nguyen T T, Yao X. Continuous Dynamic Constrained Optimization-The Challenges. IEEE Trans on Evolutionary Computation, 2012, 16(6): 769-786
[6]  Farina M, Deb K, Amato P. Dynamic Multiobjective Optimization Problems: Test Cases, Approximations, and Applications. IEEE Trans on Evolutionary Computation, 2004, 8(5): 425-442
[7]  Greeff G M, Engelbrecht A P. Solving Dynamic Multi-objective Problems with Vector Evaluated Particle Swarm Optimization // Proc of the IEEE Congress on Evolutionary Computation. Hong Kong, China, 2008: 2917-2924
[8]  Khaled A K M, Talukder A, Kirley M. A Pareto Following Variation Operator for Evolutionary Dynamic Multi-objective Optimization // Proc of the IEEE Congress on Evolutionary Computation. Hong Kong, China, 2008: 2270-2277
[9]  Liu C A, Wang Y P. Evolutionary Algorithm for Dynamic Multi-objective Optimization Problems and Its Convergence. Acta Electronica Sinica, 2007, 35(6): 1118-1121 (in Chinese) (刘淳安,王宇平.动态多目标优化的进化算法及其收敛性分析.电子学报, 2007, 35(6): 1118-1121)
[10]  Hu C Y, Yao H, Yan X S. Multiple Particle Swarms Coevolutionary Algorithm for Dynamic Multi-objective Optimization Problems and Its Application. Journal of Computer Research and Development, 2013, 50(6): 1313-1323 (in Chinese)(胡成玉,姚 宏,颜雪松.基于多粒子群协同的动态多目标优化算法及应用. 计算机研究与发展, 2013, 50(6): 1313-1323)
[11]  Geng H T, Zhang M, Huang L F, et al. Infeasible Elitists and Stochastic Ranking Selection in Constrained Evolutionary Multi-objective Optimization // Proc of the 6th International Conference on Simulated Evolution and Learning. Hefei, China, 2006: 336-344
[12]  Geng H T, Huang Y H, Gao J, et al. A Self-Guided Particle Swarm Optimization with Independent Dynamic Inertia Weights Setting on Each Particle. Applied Mathematics & Information Sciences, 2013, 7(2): 545-552
[13]  Geng H T, Zhu H F, Zhang Q, et al. Co-evolutionary Multi-objective Optimization Algorithm with Balanced Diversity and Convergence. Control and Decision, 2013, 28(1): 55-60 (in Chinese)(耿焕同,朱海峰,张 茜,等.均衡分布性与收敛性的协同进化多目标优化算法.控制与决策, 2013, 28(1): 55-60)
[14]  Geng H T, Zhu H F, Xing R, et al. A Novel Hybrid Evolutionary Algorithm for Solving Multi-objective Optimization Problems // Proc of the 8th International Conference on Intelligent Computing Technology. Huangshan, China, 2012: 128-136
[15]  Geng H T, Gao J, Jia T T, et al. Multi-objective Particle Swarm Optimization Method with Balanced Diversity and Convergence. Journal of Computer Applications, 2013, 33(7): 1926-1929,1959 (in Chinese)(耿焕同,高 军,贾婷婷,等.均衡分布性和收敛性的多目标粒子群优化方法.计算机应用, 2013, 33(7): 1926-1929,1959)
[16]  Yao X, Liu Y. Fast Evolution Strategies // Proc of the 6th International Conference on Evolutionary Programming VI. Indianapolis, USA, 1997: 151-162
[17]  Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197
[18]  Martin W N, Spears W M. Foundations of Genetic Algorithms 6. Berlin, Germany: Springer-Verlag, 1993
[19]  Deb K, Agrawal R B. Simulated Binary Crossover for Continuous Search Space. Complex Systems, 1995, 9(2): 115-148
[20]  Zielinski K, Laur R. Differential Evolution with Adaptive Parameter Setting for Multi-objective Optimization // Proc of the IEEE Congress on Evolutionary Computation. Singapore, Singapore, 2007: 3585-3592
[21]  Cichon A, Szlachcic E, Kotowski J F. Differential Evolution for Multi-objective Optimization with Self Adaptation // Proc of the 14th International Conference on Intelligent Engineering Systems. Las Palmas, Spain, 2010: 165-169
[22]  Qu B Y, Suganthan P N. Constrained Multi-objective Optimization Algorithm with Diversity Enhanced Differential Evolution // Proc of the IEEE Congress on Evolutionary Computation. Barcelona, Spain, 2010: 1-5
[23]  Tang L X, Wang X P. A Hybrid Multiobjective Evolutionary Algorithm for Multiobjective Optimization Problems. IEEE Trans on Evolutionary Computation, 2013, 17(1): 20-45
[24]  Villalobos-Arias M, Coello C A, Hernández-Lerma O. Asymptotic Convergence of Metaheuristics for Multiobjective Optimization Problems. Soft Computing, 2006, 10(11): 1001-1005
[25]  Bosman P A N, Thierens D. The Balance between Proximity and Diversity in Multiobjective Evolutionary Algorithms. IEEE Trans on Evolutionary Computation, 2003, 7(2): 174-188
[26]  Zurada J M, Marks R J, Robinson C J. Computational Intelligence: Imitating Life. Piscataway, USA: IEEE Press , 1994
[27]  Zitzler E, Deb K, Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 2000, 8(2): 173-195
[28]  Geng H T, Sun J Q, Jia T T. MC-DCMOEA Source Code′s Download URL.[EB/OL].[2014-08-27].https://github.com/htgeng/MC-DCMOEA

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133