Schwartz W R, Kembhavi A, Harwood D, et al. Human Detection Using Partial Least Squares Analysis // Proc of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan, 2009: 24-31
[2]
Wang X Y, Han T X, Yan S C. An HOG-LBP Human Detector with Partial Occlusion Handling // Proc of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan, 2009: 32-39
[3]
Lin Z, Davis L S. A Pose-Invariant Descriptor for Human Detection and Segmentation // Proc of the 10th European Conference on Computer Vision. Marseille, France, 2008: 423-436
[4]
Walk S, Majer N, Schindler K, et al. New Features and Insights for Pedestrian Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 1030-1037
[5]
Lampert C H, Blaschko M B, Hofmann T. Beyond Sliding Windows: Object Localization by Efficient Subwindow Search // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008. DOI: 10.1109/CVPR.2008.4587586
[6]
Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, I: 886-893
[7]
Enzweiler M, Eigenstetter A, Schiele B, et al. Multi-cue Pedestrian Classification with Partial Occlusion Handling // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 990-997
[8]
Girshick R B, Felzenszwalb P F, McAllester D. Object Detection with Grammar Models[EB/OL]. [2014-12-20]. http://www.cs.berkeley.edu/~rbg/papers/grammar-nips11.pdf
[9]
Benenson R, Mathias M, Timofte R, et al. Pedestrian Detection at 100 Frames per Second // Proc of the IEEE Conference on Compu-ter Vision and Pattern Recognition. Providence, USA, 2012: 2903-2910
[10]
Lowe D G. Distinctive Image Features from Scale-Invariant Keypoint. International Journal of Computer Vision, 2004, 60(2): 91-110
[11]
Sabzmeydani P, Mori G. Detecting Pedestrians by Learning Shapelet Features // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007. DOI: 10.1109/CVPR.2007.383134
[12]
Mu Y D, Yan S C, Liu Y, et al. Discriminative Local Binary Pa-tterns for Human Detection in Personal Album // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Ancho-rage, USA, 2008. DOI: 10.1109/CVPR.2008.4587800
[13]
Ren X F, Ramanan D. Histograms of Sparse Codes for Object Detection // Proc of the 26th IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 3246-3253
[14]
Ouyang Y, Zhang S Y, Zhang Y. Multi-scale Human Detection Based on Window Gradient Potential Energy with Partial Occlusion Handling. Journal of Electronics & Information Technology, 2012, 34(4): 858-864 (in Chinese)(欧阳毅,张三元,张 引.基于窗口边缘梯度势能的人体遮挡多尺度检测算法.电子与信息学报, 2012, 34(4): 858-864)
[15]
Zeng B B, Wang G J, Lin X G. Color Self-similarity Feature Based Real-Time Pedestrian Detection. Journal of Tsinghua University: Science and Technology, 2012, 52(4): 571-574 (in Chinese)(曾波波,王贵锦,林行刚.基于颜色自相似度特征的实时行人检测.清华大学学报:自然科学版, 2012, 52(4): 571-574)
[16]
Lin Z, Hua G, Davis L S. Multiple Instance Feature for Robust Part-Based Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 405-412
[17]
Ding J H, Geng W D, Wang Y G. Human Detection Method Based on Multi-part Detector and Multi-instance Learning. Pattern Recognition and Artificial Intelligence, 2012, 25(5): 803-809 (in Chinese)(丁建浩,耿卫东,王毅刚.基于多部位多示例学习的人体检测.模式识别与人工智能, 2012, 25(5): 803-809)
[18]
Felzenszwalb P F, Girshick R B, McAllester D, et al. Object Detection with Discriminatively Trained Part-Based Models. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645
[19]
Ye Q X, Jiao J B, Jiang S Q. Fast and Robust Pedestrian Detection Algorithm with Multi-scale Orientation Features. Journal of Software, 2011, 22(12): 3004-3014 (in Chinese)(叶齐祥,焦建彬,蒋树强.基于多尺度方向特征的快速鲁棒人体检测算法.软件学报, 2011, 22(12): 3004-3014)
[20]
Wojek C, Walk S, Schiele B. Multi-cue Onboard Pedestrian Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 794-801
[21]
Maji S, Berg A C, Malik J. Classification Using Intersection Kernel Support Vector Machines is Efficient // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008. DOI: 10.1109/CVPR.2008.4587630
[22]
Freund Y, Schapire R E. Decision-Theoretic Generalization of On-line Learning and an Application to Boosting. Journal of Computer and System Sciences, 1997, 55(1): 119-139
[23]
Friedman J, Hastie T, Tibshirani R. Additive Logistic Regression: A Statistical View of Boosting. The Annals of Statistics, 2000, 28(2): 337-407