全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向胎盘植入产前诊断的医学语义特征提取算法*

DOI: 10.16451/j.cnki.issn1003-6059.201506001, PP. 481-489

Keywords: 胎盘植入(PA),特征选择,最大相关和最小冗余算法(mRMR),非支配排序遗传算法II(NSGA-II)

Full-Text   Cite this paper   Add to My Lib

Abstract:

胎盘植入由于其临床特征隐匿,尚无一种敏感性、特异性高的产前诊断手段,因此文中将数据的特征提取方法引入胎盘植入产前诊断领域,从特征相关性的角度,提出胎盘植入有效医学语义的多目标特征优化问题,并给出求解该问题的一种改进的非支配排序遗传算法II(NSGA-II).基于实际胎盘植入相关临床数据的计算结果表明,文中算法能从复杂的胎盘植入相关临床数据中提取具有胎盘植入有效语义的特征集合.经过接收者操作特征(ROC)曲线分析,提取的特征医学语义具有较高的诊断价值,可为产科医师研究胎盘植入的发病机制和及时产前诊断提供有效的辅助手段.文中研究还发现,一些临床生化检查指标具有重要作用,可作为胎盘植入产前诊断的有效依据.

References

[1]  Chen D J. Placenta Accreta. 1st Edition. Changsha, China: Hunan Science & Technology Press, 2013 (in Chinese)(陈敦金.胎盘植入.第1版.长沙:湖南科学技术出版社, 2013)
[2]  Baughman W C, Corteville J E, Shah R R. Placenta Accreta: Spectrum of US and MR Imaging Findings. RadioGraphics, 2008, 28(7): 1905-1916
[3]  Lax A, Prince M R, Mennitt K W, et al. The Value of Specific MRI Features in the Evaluation of Suspected Placental Invasion. Magnetic Resonance Imaging, 2007, 25(1): 87-93
[4]  Derman A Y, Nikac V, Haberman S, et al. MRI of Placenta Accreta: A New Imaging Perspective. American Journal of Roentgenology, 2011, 197(6): 1514-1521
[5]  Liang N. MRI Research Progress in Placent Aincreta. Journal of Practical Radiology, 2013, 29(2): 315-318 (in Chinese)(梁 娜.MRI 在胎盘植入中的研究进展.实用放射学杂志, 2013, 29(2): 315-318)
[6]  Pang X S. A Comparative Study of Interpolation Processing Method for Missing Data. Statistics and Decision, 2012, (24): 18-22 (in Chinese)(庞新生.缺失数据插补处理方法的比较研究.统计与决策, 2012, (24): 18-22)
[7]  Fayyad U M, Irani K B. Multi-interval Discretization of Continuous-Valued Attributes for Classification Learning // Proc of the 13th International Joint Conference on Artificial Intelligence. Chambery, France, 1993, II: 1022-1027
[8]  Ding C, Peng H C. Minimum Redundancy Feature Selection from Microarray Gene Expression Data. Journal of Bioinformatics and Computational Biology, 2005, 3(2): 185-205
[9]  Peng H C, Long F H, Ding C. Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238
[10]  Kira K, Rendell L A. The Feature Selection Problem: Traditional Methods and a New Algorithm // Proc of the 10th National Confe-rence on Artificial Intelligence. San Jose, USA, 1992: 129-134
[11]  Cai H M, Ruan P Y, Ng M, et al. Feature Weight Estimation for Gene Selection: A Local Hyperlinear Learning Approach[EB/OL]. [2014-03-15]. http://www.biomedcentral.com/content/pdf/1471-2105-15-70.pdf
[12]  Jia J H, Yang N, Zhang C, et al. Object-Oriented Feature Selection of High Spatial Resolution Images Using an Improved Relief Algorithm. Mathematical and Computer Modelling, 2013, 58(3/4): 619-626
[13]  Liu H, Yu L. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Trans on Knowledge and Data Engineering, 2005, 17(4): 491-502
[14]  Ferreira A J, Figueiredo M A T. Efficient Feature Selection Filters for High-Dimensional Data. Pattern Recognition Letters, 2012, 33(13): 1794-1804
[15]  Dai K, Yu H Y, Li Q. A Multi-class Feature Selection Algorithm Based on Support Vector Machine. Pattern Recognition and Artificial Intelligence, 2014, 27(5): 463-471 (in Chinese)(代 琨,于宏毅,李 青.一种基于支持向量机的特征选择算法.模式识别与人工智能, 2014, 27(5): 463-471)
[16]  Gong M G, Jiao L C, Yang D D, et al. Research on Evolutionary Multi-objective Optimization Algorithms. Journal of Software, 2009, 20(2): 271-289 (in Chinese)(公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究.软件学报, 2009, 20(2): 271-289)
[17]  Srinivas N, Deb K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 1994, 2(3): 221-248
[18]  Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197
[19]  Guyon I, Elisseeff A. An Introduction to Variable and Feature Selection. Journal of Machine Learning Research, 2003, 3: 1157-1182
[20]  Chang C C, Lin C J. LIBSVM: A Library for Support Vector Machines[EB/OL]. [2014-02-25]. http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
[21]  Hsu C W, Chang C C, Lin C J. A Practical Guide to Support Vector Classification[EB/OL]. [2014-02-25]. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
[22]  Liu L, Liu W Y, Chu C Y, et al. Classification of Tumid Lymph Nodes Metastases and Non-metastases from Lung Cancer in CT Image. Journal of Electronics & Information Technology, 2009, 31(10): 2476-2482 (in Chinese)(刘 露,刘宛予,楚春雨,等.CT图像中肿大淋巴结肺癌转移分类方法.电子与信息学报, 2009, 31(10): 2476-2482)
[23]  Meier T B, Desphande A S, Vergun S, et al. Support Vector Machine Classification and Characterization of Age-Related Reorganization of Functional Brain Networks. NeuroImage. 2012, 60(1): 601-613
[24]  Lin G W. The Research and Evaluation of Diagnostic Test(2). Journal of Diagnostics, 2003, 2(2): U005-U010 (in Chinese) (林果为.诊断试验的研究与评价(2).诊断学理论与实践, 2003, 2(2): U005-U010)
[25]  Hu M Z, Li K. A Comparative Method of the ROC Curves of Two Clinical Diagnosis. Journal of Mathematical Medicine, 2005, 18(4): 293-296 (in Chinese)(胡明珠,李 康.两种临床诊断方法效果的 ROC曲线比较.数理医药学杂志, 2005, 18(4): 293-296)
[26]  Song H L, He J, Yu H T, et al. Area under ROC Curves in Eva-luation and Comparison of Two Correlated Diagnostic Tests. Academic Journal of Second Military Medical University, 2006, 27(5): 562-563 (in Chinese)(宋花玲,贺 佳,虞慧婷,等.应用 ROC 曲线下面积对两相关诊断试验进行评价和比较.第二军医大学学报, 2006, 27(5): 562-563)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133