Chen D J. Placenta Accreta. 1st Edition. Changsha, China: Hunan Science & Technology Press, 2013 (in Chinese)(陈敦金.胎盘植入.第1版.长沙:湖南科学技术出版社, 2013)
[2]
Baughman W C, Corteville J E, Shah R R. Placenta Accreta: Spectrum of US and MR Imaging Findings. RadioGraphics, 2008, 28(7): 1905-1916
[3]
Lax A, Prince M R, Mennitt K W, et al. The Value of Specific MRI Features in the Evaluation of Suspected Placental Invasion. Magnetic Resonance Imaging, 2007, 25(1): 87-93
[4]
Derman A Y, Nikac V, Haberman S, et al. MRI of Placenta Accreta: A New Imaging Perspective. American Journal of Roentgenology, 2011, 197(6): 1514-1521
[5]
Liang N. MRI Research Progress in Placent Aincreta. Journal of Practical Radiology, 2013, 29(2): 315-318 (in Chinese)(梁 娜.MRI 在胎盘植入中的研究进展.实用放射学杂志, 2013, 29(2): 315-318)
[6]
Pang X S. A Comparative Study of Interpolation Processing Method for Missing Data. Statistics and Decision, 2012, (24): 18-22 (in Chinese)(庞新生.缺失数据插补处理方法的比较研究.统计与决策, 2012, (24): 18-22)
[7]
Fayyad U M, Irani K B. Multi-interval Discretization of Continuous-Valued Attributes for Classification Learning // Proc of the 13th International Joint Conference on Artificial Intelligence. Chambery, France, 1993, II: 1022-1027
[8]
Ding C, Peng H C. Minimum Redundancy Feature Selection from Microarray Gene Expression Data. Journal of Bioinformatics and Computational Biology, 2005, 3(2): 185-205
[9]
Peng H C, Long F H, Ding C. Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238
[10]
Kira K, Rendell L A. The Feature Selection Problem: Traditional Methods and a New Algorithm // Proc of the 10th National Confe-rence on Artificial Intelligence. San Jose, USA, 1992: 129-134
[11]
Cai H M, Ruan P Y, Ng M, et al. Feature Weight Estimation for Gene Selection: A Local Hyperlinear Learning Approach[EB/OL]. [2014-03-15]. http://www.biomedcentral.com/content/pdf/1471-2105-15-70.pdf
[12]
Jia J H, Yang N, Zhang C, et al. Object-Oriented Feature Selection of High Spatial Resolution Images Using an Improved Relief Algorithm. Mathematical and Computer Modelling, 2013, 58(3/4): 619-626
[13]
Liu H, Yu L. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Trans on Knowledge and Data Engineering, 2005, 17(4): 491-502
[14]
Ferreira A J, Figueiredo M A T. Efficient Feature Selection Filters for High-Dimensional Data. Pattern Recognition Letters, 2012, 33(13): 1794-1804
[15]
Dai K, Yu H Y, Li Q. A Multi-class Feature Selection Algorithm Based on Support Vector Machine. Pattern Recognition and Artificial Intelligence, 2014, 27(5): 463-471 (in Chinese)(代 琨,于宏毅,李 青.一种基于支持向量机的特征选择算法.模式识别与人工智能, 2014, 27(5): 463-471)
[16]
Gong M G, Jiao L C, Yang D D, et al. Research on Evolutionary Multi-objective Optimization Algorithms. Journal of Software, 2009, 20(2): 271-289 (in Chinese)(公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究.软件学报, 2009, 20(2): 271-289)
[17]
Srinivas N, Deb K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 1994, 2(3): 221-248
[18]
Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197
[19]
Guyon I, Elisseeff A. An Introduction to Variable and Feature Selection. Journal of Machine Learning Research, 2003, 3: 1157-1182
[20]
Chang C C, Lin C J. LIBSVM: A Library for Support Vector Machines[EB/OL]. [2014-02-25]. http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
[21]
Hsu C W, Chang C C, Lin C J. A Practical Guide to Support Vector Classification[EB/OL]. [2014-02-25]. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
[22]
Liu L, Liu W Y, Chu C Y, et al. Classification of Tumid Lymph Nodes Metastases and Non-metastases from Lung Cancer in CT Image. Journal of Electronics & Information Technology, 2009, 31(10): 2476-2482 (in Chinese)(刘 露,刘宛予,楚春雨,等.CT图像中肿大淋巴结肺癌转移分类方法.电子与信息学报, 2009, 31(10): 2476-2482)
[23]
Meier T B, Desphande A S, Vergun S, et al. Support Vector Machine Classification and Characterization of Age-Related Reorganization of Functional Brain Networks. NeuroImage. 2012, 60(1): 601-613
[24]
Lin G W. The Research and Evaluation of Diagnostic Test(2). Journal of Diagnostics, 2003, 2(2): U005-U010 (in Chinese) (林果为.诊断试验的研究与评价(2).诊断学理论与实践, 2003, 2(2): U005-U010)
[25]
Hu M Z, Li K. A Comparative Method of the ROC Curves of Two Clinical Diagnosis. Journal of Mathematical Medicine, 2005, 18(4): 293-296 (in Chinese)(胡明珠,李 康.两种临床诊断方法效果的 ROC曲线比较.数理医药学杂志, 2005, 18(4): 293-296)
[26]
Song H L, He J, Yu H T, et al. Area under ROC Curves in Eva-luation and Comparison of Two Correlated Diagnostic Tests. Academic Journal of Second Military Medical University, 2006, 27(5): 562-563 (in Chinese)(宋花玲,贺 佳,虞慧婷,等.应用 ROC 曲线下面积对两相关诊断试验进行评价和比较.第二军医大学学报, 2006, 27(5): 562-563)