全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Fisher判别准则的低秩矩阵恢复*

DOI: 10.16451/j.cnki.issn1003-6059.201507009, PP. 651-656

Keywords: 低秩矩阵恢复,Fisher准则,人脸识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

标准的低秩矩阵恢复算法是把原始数据集分解成一组表征基和与此相应的稀疏误差,并以此分解对原始数据建模.受Fisher准则启发,文中提出基于带有Fisher判别准则的低秩矩阵恢复算法,在有监督学习模式下对低秩矩阵进行恢复,即当所有的标签信息都知道的情况下考虑类内散度和类间散度.文中所构造的模型可利用增广拉格朗日乘子法求解,并通过对标准的低秩矩阵模型增加判别性提高性能,利用文中算法所学习到的表征基使类内结构相关,而类间相互独立.在人脸识别问题上的仿真实验表明该算法的有效性.

References

[1]  Olshausen B A, Field D J. Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Vision Research, 1997, 37(23): 3311-3325
[2]  Vinje W E, Gallant J L. Sparse Coding and Decorrelation in Primary Visual Cortex During Natural Vision. Science, 2000, 287(5456): 1273-1276
[3]  Wright J, Ma Y, Mairal J, et al. Sparse Representation for Computer Vision and Pattern Recognition. Proceedings of the IEEE, 2010, 98(6): 1031-1044
[4]  Wagner A, Wright J, Ganesh A, et al. Towards a Practical Face Re-cognition System: Robust Registration and Illumination by Sparse Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(2): 372-386
[5]  Yang M, Zhang D, Yang J, et al. Robust Sparse Coding for Face Recognition // Proc of the 24th IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2011: 625-632
[6]  Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86
[7]  Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
[8]  He X F, Yan S C, Hu Y X, et al. Face Recognition Using Laplacianfaces. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340
[9]  He X F, Niyogi P. Locality Preserving Projections.[EB/OL].[2014-02-20]. http://papers.nips.cc/paper/2359-locality-preserving-projections.pdf
[10]  Cai D, He X F, Han J W, et al. Orthogonal Laplacianfaces for Face Recognition. IEEE Trans on Image Processing, 2006, 15(11): 3608-3614
[11]  Candès E J, Recht B. Exact Low Rank Matrix Completion via Convex optimization // Proc of the 46th Annual Allerton Conference on Communication, Control, and Computing. Urbana-Champaign, USA, 2008: 806-812
[12]  Lin Z C, Chen M M, Ma Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrix[EB/OL].[2014-02-20]. http://www.cis.pku.edu.cn/faculty/vision/zlin/Publications/ALM-v5.pdf
[13]  Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133