Zachariadis E E, Tarantilis C D, Kiranoudis C T. A Guided Tabu Search for the Vehicle Routing Problem with Two-Dimensional Loa-ding Constraints. European Journal of Operational Research, 2009, 195(3): 729-743
[2]
Dominguez O, Juan A A, Barrios B, et al. Using Biased Randomization for Solving the Two-Dimensional Loading Vehicle Routing Problem with Heterogeneous Fleet. Annals of Operations Research, 2014. DOI: 10.1007/s10479-014-1551-4
[3]
Ji J, Lu Y P, Zha J Z, et al. A Deterministic Algorithm for Optimal Two-Segment Cutting Patterns of Rectangular Blanks. Chinese Journal of Computers, 2012, 35(1): 183-191 (in Chinese) (季 君,陆一平,查建中,等.生成矩形毛坯最优两段排样方式的确定型算法.计算机学报, 2012, 35(1): 183-191)
[4]
He K, Jin Y, Huang W Q. Heuristics for Two-Dimensional Strip Packing Problem with 90° Rotations. Expert Systems with Applications, 2013, 40(14): 5542-5550
[5]
Wang Y S, Teng H F. Knowledge Fusion Design Method: Satellite Module Layout. Chinese Journal of Aeronautics, 2009, 22(1): 32-42
[6]
He K, Mo D Z, Ye T, et al. A Coarse-to-Fine Quasi-Physical Optimization Method for Solving the Circle Packing Problem with Equilibrium Constraints. Computers & Industrial Engineering, 2013, 66(4): 1049-1060
[7]
Wang P, Huang S, Zhu Z Q. Exploring Improved Artificial Bee Co-lony Algorithm for Solving Circle Packing Problem with Equilibrium Constraints. Journal of Northwestern Polytechnical University, 2014, 32(2): 240-245 (in Chinese) (王 鹏,黄 帅,朱舟全.求解带平衡约束圆形packing问题的改进人工蜂群算法.西北工业大学学报, 2014, 32(2): 240-245)
[8]
Feng E M, Xu G J, Teng H F. Optimization Layout Models of Rectangular Elements with Behavior Constraints and Non-interference Judging Algorithm. Applied Mathematics: A Journal of Chinese Universities, 1993, 8(1): 53-60 (in Chinese) (冯恩民,许广键,滕弘飞.带性能约束的矩形图元布局优化模型及不干涉性算法.高校应用数学学报, 1993, 8(1): 53-60)
[9]
Feng E M, Wang X L, Wang X M, et al. A Global Optimization Algorithm for Layout Problems with Behavior Constraints. Applied Mathematics: A Journal of Chinese Universities, 1999, 14A(1): 98-104 (in Chinese)(冯恩民,王锡禄,王秀梅,等.带性能约束布局问题的全局优化算法.高校应用数学学报, 1999, 14A(1): 98-104)
[10]
Xu Y C, Xiao R B, Amos M. Particle Swarm Algorithm for Weighted Rectangle Placement // Proc of the 3rd International Confe-rence on Natural Computation. Haikou, China, 2007: 728-732
[11]
Xu Y C, Dong F M, Liu Y, et al. Genetic Algorithm for Rectangle Layout Optimization with Equilibrium Constraints. Pattern Recognition and Artificial Intelligence, 2010, 23(6): 794-801 (in Chinese)(徐义春,董方敏,刘 勇,等.带平衡约束矩形布局优化问题的遗传算法.模式识别与人工智能, 2010, 23(6): 794-801)
[12]
Huang Z D, Xiao R B. Hybrid Algorithm for the Rectangular Pac-king Problem with Constraints of Equilibrium. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2011, 39(3): 96-99, 104 (in Chinese)(黄振东,肖人彬.求解带平衡约束矩形布局问题的混合算法.华中科技大学学报:自然科学版, 2011, 39(3): 96-99, 104)
[13]
Liu J F, Zhou Z L, Liu Z X, et al. Improved Tabu Search Algorithm for the Rectangle Packing Problem with Equilibrium Constraints. Journal of Information & Computational Science, 2012, 9(18): 5831-5839
[14]
Liu J F, Li G. Basin Filling Algorithm for the Circular Packing Problem with Equilibrium Behavioral Constraints. Science China: Information Sciences, 2010, 40(3): 423-432 (in Chinese)(刘景发,李 刚.求解带平衡性能约束的圆形装填问题的吸引盘填充算法.中国科学:信息科学, 2010, 40(3): 423-432)
[15]
He K, Mo D Z, Xu R C, et al. A Quasi-Physical Algorithm Based on Coarse and Fine Adjustment for Solving Circles Packing Problem with Constraints of Equilibrium. Chinese Journal of Computers, 2013, 36(6): 1224-1234 (in Chinese)(何 琨,莫旦增,许如初,等.基于粗精调技术的求解带平衡约束圆形Packing问题的拟物算法.计算机学报, 2013, 36(6): 1224-1234)
[16]
Lodi A, Martello S, Monaci M. Two-Dimensional Packing Pro-blems: A Survey. European Journal of Operational Research, 2002, 141(2): 241-252
[17]
Zhai J G, Feng E M, Li Z M, et al. Non-overlapped Genetic Algorithm for Layout Problem with Behavioral Constraints. Journal of Dalian University of Technology, 1999, 39(3): 352-357 (in Chinese)(翟金刚,冯恩民,李振民,等.带性能约束布局问题的不干涉遗传算法.大连理工大学学报, 1999, 39(3): 352-357)