全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于探索与利用平衡理论的灾变粒子群算法*

DOI: 10.16451/j.cnki.issn1003-6059.201507004, PP. 603-612

Keywords: 探索与利用平衡,种群多样性,正交实验,适应值-距离关联系数

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于算法只有适应优化问题的特性才能表现出优异性能的观点,在探索与利用平衡的理论框架下将灾变机制引入粒子群算法.在对灾变的强度和范围进行深入研究的基础上,提出4种控制灾变的方法,并通过多组正交实验研究最佳的灾变触发方式.通过实验分析得出如下结论:灾变对高维问题的作用有限;灾变强度控制在15%以下为宜;以种群多样性作为灾变的触发条件,能得到较好效果.以上述结论为基础提出自适应灾变粒子群算法,并通过与其他算法对比验证文中算法具有较好性能.

References

[1]  Lu Y M, Chen S, Li M, et al. Self-adaptive Cellular Genetic Algorithms with Disaster Based on Selection Pressure. Journal of System Simulation, 2013, 25(3): 436-440, 444 (in Chinese)(鲁宇明,陈 殊,黎 明,等.自适应调整选择压力的灾变元胞遗传算法.系统仿真学报, 2013, 25(3): 436-440, 444)
[2]  Kirley M. A Cellular Genetic Algorithm with Disturbances: Optimisation Using Dynamic Spatial Interactions. Journal of Heuristics, 2002, 8(3): 321-342
[3]  Kirley M. Ecological Algorithms: An Investigation of Adaptation, Diversity and Spatial Patterns in Complex Optimisation Problems. Ph.D Dissertation. New South Wales, Australia: Chorles Sturt University, 2002
[4]  Alba E, Dorronsoro B. Cellular Genetic Algorithms. New York, USA: Springer-Verlag, 2008
[5]  Park T, Ryu K R. A Dual-Population Genetic Algorithm for Adaptive Diversity Control. IEEE Trans on Evolutionary Computation, 2010, 14(6): 865-884
[6]  Zhang X H, Dai G Z, Xu N P. Study on Diversity of Population in Genetic Algorithms. Control Theory and Applications, 1998, 15(1): 17-23 (in Chinese) (张晓缋,戴冠中,徐乃平.遗传算法种群多样性的分析研究.控制理论与应用, 1998, 15(1): 17-23)
[7]  Jones T, Forrest S. Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms // Proc of the 6th International Conference on Genetic Algorithms. Pittsburgh, USA, 1995: 184-192
[8]  Yan H J, Li J W, Li M Q. Evolutionary Algorithms: Schema, Emergence and Hardness. Beijing, China: Science Press, 2012 (in Chinese) (杨海军,李建武,李敏强.进化算法的模式、涌现与困难性研究.北京:科学出版社, 2012)
[9]  Feng Q X, Liu S Y, Zhang J K, et al. Extrapolated Particle Swarm Optimization Based on Orthogonal Design. Journal of Convergence Information Technology, 2012, 7(2): 141-152
[10]  Suganthan P N, Hansen N, Liang J J, et al. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Technical Report, 2005005. Singapore, Singapore: Nanyang Technological University, 2005
[11]  Das S, Mandal A, Mukherjee R. An Adaptive Differential Evolution Algorithm for Global Optimization in Dynamic Environments. IEEE Trans on Cybernetics, 2014, 44(6): 966-978
[12]  Hu Z B, Xiong S W, Su Q H, et al. Finite Markov Chain Analysis of Classical Differential Evolution Algorithm. Journal of Computational and Applied Mathematics, 2014, 268(1): 121-134
[13]  Yang Q W, Cai L, Xue Y C. A Survey of Differential Evolution Algorithms. Pattern Recognition and Artificial Intelligence, 2008, 21(4): 506-513 (in Chinese)(杨启文,蔡 亮,薛云灿.差分进化算法综述.模式识别与人工智能, 2008, 21(4): 506-513)
[14]  Wolpert D H, Macready W G. No Free Lunch Theorems for Optimization. IEEE Trans on Evolutionary Computation, 1997, 1(1): 67-82
[15]  Naudts B, Kallel L. A Comparison of Predictive Measures of Pro-blem Difficulty in Evolutionary Algorithms. IEEE Trans on Evolutionary Computation, 2000, 4(1): 1-15
[16]  Li K, Li M, Chen H. Research Progress of Hardness Theories on Evolutionary Algorithm. Acta Electronica Sinica, 2014, 42(2): 383-390 (in Chinese) (李 坤,黎 明,陈 昊.进化算法的困难性理论研究进展.电子学报, 2014, 42(2): 383-390)
[17]  Malan K M, Engelbrecht A P. A Survey of Techniques for Characterising Fitness Landscapes and Some Possible Ways Forward. Information Sciences, 2013, 241: 148-163
[18]  Jones T. One Operator, One Landscape[EB/OL]. [2014-08-20]. http://www.santafe.edu/media/workingpapers/95-02-025.pdf
[19]  Cˇrepinek M, Liu S H, Mernik M. Exploration and Exploitation in Evolutionary Algorithms: A Survey. ACM Computing Surveys, 2013. DOI: 10.1145/2480741.2480752
[20]  Bocanet A, Ponsiglione C. Balancing Exploration and Exploitation in Complex Environments. Vine, 2012, 42(1): 15-35
[21]  Liu S H, Crepinsek M, Mernik M, et al. Parameter Control of EAs Using Exploration and Exploitation Measures: Preliminary Results // Proc of the 5th International Conference on Bioinspired Optimization Methods and Their Applications. Bohinj, Slovenia, 2012: 141-150
[22]  Li C H, Yang S X, Nguyen T T. A Self-learning Particle Swarm Optimizer for Global Optimization Problems. IEEE Trans on Systems, Man, and Cybernetics: Cybernetics, 2012, 42(3): 627-646
[23]  Xin B, Chen J, Peng Z H, et al. An Adaptive Hybrid Optimizer Based on Particle Swarm and Differential Evolution for Global Optimization. Science China: Information Sciences, 2010, 53(5): 980-989
[24]  Mukhopadhyay S, Banerjee S. Global Optimization of an Optical Chaotic System by Chaotic Multi Swarm Particle Swarm Optimization. Expert Systems with Applications, 2012, 39(1): 917-924
[25]  Chauhan P, Pant M, Deep K. Parameter Optimization of Multi-pass Turning Using Chaotic PSO. International Journal of Machine Learning and Cybernetics, 2015, 6(2): 319-337
[26]  Zhao F Q, Tang J X, Wang J B, et al. An Improved Particle Swarm Optimisation with a Linearly Decreasing Disturbance Term for Flow Shop Scheduling with Limited Buffers. International Journal of Computer Integrated Manufacturing, 2014, 27(5): 488-499
[27]  Gao H, Kwong S, Yang J J, et al. Particle Swarm Optimization Based on Intermediate Disturbance Strategy Algorithm and Its Application in Multi-threshold Image Segmentation. Information Sciences, 2013, 250: 82-112
[28]  Gan X S, Duanmu J S, Meng Y B, et al. Wavelet Neural Network Aerodynamic Modeling from Flight Data Based on PSO Algorithm with Information Sharing and Velocity Disturbance. Journal of Central South University, 2013, 20(6): 1592-1601
[29]  Liu W Q. Design of Experiments. Beijing, China: Tsinghua University Press, 2005 (in Chinese)(刘文卿.实验设计.北京:清华大学出版社, 2005)
[30]  Hofmann K, Whiteson S, de Rijke M. Balancing Exploration and Exploitation in Listwise and Pairwise Online Learning to Rank for Information Retrieval. Information Retrieval, 2013, 16(1): 63-90
[31]  Ishii S, Yoshida W, Yoshimoto J. Control of Exploitation-Exploration Meta-Parameter in Reinforcement Learning. Neural Networks, 2002, 15(4/5/6): 665-687
[32]  Cook Z, Franks D W, Robinson E J H. Exploration Versus Exploitation in Polydomous Ant Colonies. Journal of Theoretical Biology, 2013, 323: 49-56
[33]  Bao Y K, Hu Z Y, Xiong T. A PSO and Pattern Search Based Memetic Algorithm for SVMs Parameters Optimization. Neurocomputing, 2013, 117: 98-106
[34]  Posen H E, Levinthal D A. Chasing a Moving Target: Exploitation and Exploration in Dynamic Environments. Management Science, 2012, 58(3): 587-601
[35]  Chen J, Xin B, Peng Z H, et al. Optimal Contraction Theorem for Exploration-Exploitation Tradeoff in Search and Optimization. IEEE Trans on Systems, Man and Cybernetics: Systems and Humans, 2009, 39(3): 680-691
[36]  Prudius A A, Andrado'ttir S. Simulation Optimization Using Ba-lanced Explorative and Exploitative Search // Proc of the 36th Conference on Winter Simulation. Washington, USA, 2004: 545-549
[37]  Auger A, Schoenauer M, Teytaud O. Local and Global Order 3/2 Convergence of a Surrogate Evolutionary Algorithm // Proc of the 7th Annual Conference on Genetic and Evolutionary Computation. Washington, USA, 2005: 857-864
[38]  Chen S, Lu Y M, Yang H Y, et al. Selection Pressure Study of Cellular Genetic with Disturbances. Computer Engineering and Applications, 2011, 47(27): 32-35, 97 (in Chinese)(陈 殊,鲁宇明,杨红雨,等.灾变机制下元胞遗传算法的选择压力研究.计算机工程与应用, 2011, 47(27): 32-35, 97)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133