全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于压缩感知高阶张量扩散磁共振稀疏成像方法*

DOI: 10.16451/j.cnki.issn1003-6059.201508006, PP. 710-719

Keywords: 高阶张量,稀疏表示,反卷积,压缩感知

Full-Text   Cite this paper   Add to My Lib

Abstract:

高阶张量扩散磁共振成像技术是高分辨率显示活体脑白质微结构信息的重要方法,但其数据采集时间较长、纤维重构分辨率较低等缺点限制其在临床上的应用.文中在高阶张量模型的基础上提出一种稀疏加权的纤维方向分布估计方法.该方法首先建立高阶张量球面反卷积纤维方向估计模型,然后提出一种纤维方向的稀疏表示方法,最后建立稀疏约束反卷积的l1范数优化模型.针对优化模型的求解,提出一种用低阶训练稀疏字典解决高阶优化问题的计算方法.模拟数据和临床数据的实验表明,纤维方向分布估计方法有效提高高阶张量成像方法的角度分辨率,降低角度识别误差.

References

[1]  Assaf Y, Pasternak O. Diffusion Tensor Imaging(DTI)-Based White Matter Mapping in Brain Research: A Review. Journal of Molecular Neuroscience, 2008, 34(1): 51-61
[2]  Basser P J, Mattiello J, LeBihan D. MR Diffusion Tensor Spectroscopy and Imaging. Biophysical Journal, 1994, 66(1): 259-267
[3]  Cheng J, Ghosh A, Deriche R, et al. Model-Free, Regularized, Fast, and Robust Analytical Orientation Distribution Function Estimation // Proc of the 13th Iternational Conference on Medical Image Computing and Computer-Assisted Intervention. Beijing, China, 2010: 648-656
[4]  Hlawitschka M, Scheuermann G. Tracking Lines in Higher Order Tensor Fields // Hagen H, ed. Scientific Visualization: Advanced Concepts. Dagstuhl, Germany: Schloss Dagstuhl, 2010: 124-135
[5]  zarslan E, Mareci T H. Generalized Diffusion Tensor Imaging and Analytical Relationships between Diffusion Tensor Imaging and High Angular Resolution Diffusion Imaging. Magnetic Resonance in Medicine, 2003, 50(5): 955-965
[6]  Moakher M. On the Averaging of Symmetric Positive-Definite Tensors. Journal of Elasticity, 2006, 82(3): 273-296
[7]  Moakher M, Norris A N. The Closest Elastic Tensor of Arbitrary Symmetry to an Elasticity Tensor of Lower Symmetry. Journal of Elasticity, 2006, 85(3): 215-263
[8]  Barmpoutis A, Hwang M S, Howland D, et al. Regularized Positive-Definite Fourth Order Tensor Field Estimation from DW-MRI. NeuroImage, 2009, 45(1): S153-S162
[9]  Barmpoutis A, Jeffery H, Vemuri B C. Approximating Symmetric Positive Semidefinite Tensors of Even Order. SIAM Journal on Imaging Sciences, 2012, 5(1): 434-464
[10]  Weldeselassie Y T, Barmpoutis A, Atkins M S. Symmetric Positive Semi-definite Cartesian Tensor Fiber Orientation Distributions(CT-FOD). Medical Image Analysis, 2012, 16(6): 1121-1129
[11]  Jeurissen B, Leemans A, Tournier J D, et al. Estimating the Number of Fiber Orientations in Diffusion MRI Voxels: A Constrained Spherical Deconvolution Study // Proc of the International Society for Magnetic Resonance in Medicine. Stockholm, Sweden, 2010: 573
[12]  Yeh F C, Tseng W Y I. Sparse Solution of Fiber Orientation Distribution Function by Diffusion Decomposition. PloS One, 2013. DOI: 10.1371/journal.pone.0075747
[13]  Merlet S, Caruyer E, Deriche R. Parametric Dictionary Learning for Modeling EAP and ODF in Diffusion MRI // Proc of the 15th International Conference on Medical Image Computing and Compu-ter-Assisted Intervention. Nice, France, 2012: 10-17
[14]  Donoho D L. Compressed Sensing. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306
[15]  Candès E J, Romberg J, Tao T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Trans on Information Theory, 2006, 52(2): 489-509
[16]  Anderson A W, Ding Z. Sub-voxel Measurement of Fiber Orientation Using High Angular Resolution Diffusion Tensor Imaging //Proc of the International Society for Magnetic Resonance in Medicine. Berkeley, USA, 2002: 440
[17]  Rudin W. Sums of Squares of Polynomials. The American Mathematical Monthly, 2000, 107(9): 813-821
[18]  Ghosh A, Tsigaridas E, Mourrain B, et al. A Polynomial App-roach for Extracting the Extrema of a Spherical Function and Its Application in Diffusion MRI. Medical Image Analysis, 2013, 17(5): 503-514
[19]  Patel V, Shi Y G, Thompson P M, et al. Mesh-Based Spherical Deconvolution: A Flexible Approach to Reconstruction of Non-negative Fiber Orientation Distributions. NeuroImage, 2010, 51(3): 1071-1081
[20]  Jiao F X, Gur Y, Johnson C R, et al. Detection of Crossing White Matter Fibers with High-Order Tensors and Rank-k Decompositions // Proc of the 22nd International Conference on Information Processing in Medical Imaging. Kloster Irsee, Germany, 2011: 538-549
[21]  Daducci A, Van de Ville D, Thiran J P, et al. Sparse Regularization for Fiber ODF Reconstruction: From the Suboptimality of 2 and 1 Priors to 0. Medical Image Analysis, 2014, 18(6): 820-833
[22]  Schultz T. Learning a Reliable Estimate of the Number of Fiber Directions in Diffusion MRI // Proc of the 15th International Conference on Medical Image Computing and Computer-Assisted Intervention. Nice, France, 2012: 493-500
[23]  Candès E J, Wakin M B, Boyd S P. Enhancing Sparsity by Reweighted 1 Minimization. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 877-905
[24]  Tournier J D, Calamante F, Connelly A. Robust Determination of the Fibre Orientation Distribution in Diffusion MRI: Non-negativity Constrained Super-Resolved Spherical Deconvolution. NeuroImage, 2007, 35(4): 1459-1472
[25]  Tikhonov A N, Goncharsky A, Stepanov V V, et al. Numerical Methods for the Solution of Ill-Posed Problems. Dordrecht, The Netherlands: Springer-Science + Business Media, 1995
[26]  Parker G D, Marshall D, Rosin P L, et al. A Pitfall in the Reconstruction of Fibre ODFs Using Spherical Deconvolution of Diffusion MRI Data. NeuroImage, 2013, 65: 433-448
[27]  Sderman O, Jnsson B. Restricted Diffusion in Cylindrical Geometry. Journal of Magnetic Resonance: Series A, 1995, 117(1): 94-97
[28]  Malcolm J G, Shenton M E, Rathi Y. Filtered Multi-tensor Tractography. IEEE Trans on Medical Imaging, 2010, 29(9): 1664-1675
[29]  Li R, Feng J Y, Shao K L, et al. Higher Order Tensor Imaging Model Feature Extraction Algorithm Based on Iterative Search. China Journal of Biomedical Engineering, 2012, 31(3): 365-373 (in Chinese)(李 蓉,冯远静,邵开来,等.磁共振扩散高阶张量成像的脑白质纤维微结构模型及特征提取算法.中国生物医学工程学报, 2012, 31(3): 365-373)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133