全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

张量模式三维主动外观模型及其在肺CT图像分割中的应用*

DOI: 10.16451/j.cnki.issn1003-6059.201508011, PP. 750-759

Keywords: 计算机辅助诊疗,张量技术,主动外观模型,高维奇异值分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

三维主动外观模型将肺区的三维外观矩阵转化为一维向量时,原三维灰度分布受到破坏,分割精确度受到影响,且生成过大向量,影响分割效率.基于此,文中提出张量模式的三维主动外观模型,旨在借助高维奇异值分解法直接处理肺区的三维外观矩阵,从而避免其向一维向量的转换.首先在张量理论基础上建立主动外观模型并推导参数;然后设计分块Kronecker方法确定外观张量低秩表示模式的最佳方案,以避免大规模重复计算;最后设计完整分割系统并应用在肺部CT图像中.对临床样本进行实验,与其他基于标记点的三维模型对比,证明文中模型在分割精确度与效率上更优.

References

[1]  Lee S L A, Kouzani A Z, Hu E J. Automated Detection of Lung Nodules in Computed Tomography Images: A Review. Machine Vision and Applications, 2012, 23(1): 151-163
[2]  Kass M, Witkin A, Terzopoulos D. Snakes-Active Contour Models. International Journal of Computer Vision, 1987, 1(4): 321-331
[3]  Cootes T F, Taylor C J, Cooper D H, et al. Active Shape Models: Their Training and Application. Computer Vision and Image Understanding, 1995, 61(1): 38-59
[4]  Cootes T F, Edwards G J, Taylor C J. Active Appearance Models. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(6): 681-685
[5]  Cootes T F, Edwards G J, Taylor C J, et al. Comparing Active Shape Models with Active Appearance Models // Proc of the British Machine Vision Conference. Nottingham, UK, 1999, I: 173-182
[6]  Li B, Acton S T. Active Contour External Force Using Vector Field Convolution for Image Segmentation. IEEE Trans on Image Proce-ssing, 2007, 16(8): 2096-2106
[7]  Li B, Acton S T. Automatic Active Model Initialization via Poisson Inverse Gradient. IEEE Trans on Image Processing, 2008, 17(8):1406-1420
[8]  Qin L M, Zhu C, Zhao Y, et al. Generalized Gradient Vector Flow for Snakes: New Observations, Analysis, and Improvement. IEEE Trans on Circuits and Systems for Video Technology, 2013, 23(5): 883-897
[9]  Sukno F M, Ordas S, Butakoff C, et al. Active Shape Models with Invariant Optimal Features: Application to Facial Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(7): 1105-1117
[10]  Xu T, Mandal M, Long R, et al. An Edge-Region Force Guided Active Shape Approach for Automatic Lung Field Detection in Chest Radiographs. Computerized Medical Imaging and Graphics, 2012, 36(6): 452-463
[11]  Liu J M, Udupa J K. Oriented Active Shape Models. IEEE Trans on Medical Imaging, 2009, 28(4): 571-584
[12]  Ibragimov B, Likar B, Permus F, et al. A Game-Theoretic Framework for Landmark-Based Image Segmentation. IEEE Trans on Image Processing, 2012, 31(9): 1761-1776
[13]  Sun S H, Bauer C, Beichel R. Automated 3-D Segmentation of Lungs with Lung Cancer in CT Data Using a Novel Robust Active Shape Model Approach. IEEE Trans on Medical Imaging, 2012, 31(2): 449-460
[14]  Tobon-Gomez C, Sukno F M, Butakoff C, et al. Automatic Trai-ning and Reliability Estimation for 3D ASM Applied to Cardiac MRI Segmentation. Physics in Medicine and Biology, 2012, 57(13): 4155-4174
[15]  Wang Q Z, Kang W W, Wang B. Design of Two-Dimensional Mahalanobis Distance Based on ASM and Application in Lung Segmentation. Journal of Computational Information Systems, 2014, 10(16): 7027-7034
[16]  Tobon-Gomez C, Butakoff C, Aguade S, et al. Automatic Construction of 3D-ASM Intensity Models by Simulating Image Acquisition: Application to Myocardial Gated SPECT Studies. IEEE Trans on Medical Imaging, 2008, 27(11): 1655-1667
[17]  Lekadir K, Merrifield R, Yang G Z. Outlier Detection and Hand-ling for Robust 3D Active Shape Models Search. IEEE Trans on Medical Imaging, 2007, 26(2): 212-222
[18]  Chen X J, Udupa J K, Bagci U, et al. Medical Image Segmentation by Combining Graph Cuts and Oriented Active Appearance Models. IEEE Trans on Imaging Processing, 2012, 21(4): 2035-2046
[19]  Hu S Y, Colins D L. Joint Level-Set Shape Modeling and Appea-rance Modeling for Bra Structure Segmentation. NeuroImage, 2007, 36(3): 672-683
[20]  Larsen R, Stegmann M B, Darkner S, et al. Texture Enhanced Appearance Models. Computer Vision and Image Understanding, 2007, 106 (1): 20-30
[21]  Baka N, Milles J, Hendriks E A, et al. Segmentation of Myocar-dial Perfusion MR Sequences with Multi-band Active Appearance Models Driven by Spatial and Temporal Features. Proceedings of SPIE, 2008, 6914(3): 691415.1-691415.10
[22]  Toth R, Madabhushi A. Multifeature Landmark-Free Active Appearance Models: Application to Prostate MRI Segmentation. IEEE Trans on Medical Imaging, 2012, 31(8): 1638-1650
[23]  Toth R, Ribault J, Gentile J, et al. Simultaneous Segmentation of Prostatic Zones Using Active Appearance Models with Multiple Coupled Levelsets. Computer Vision and Image Understanding, 2013, 117(9): 1051-1060
[24]  Yang J, Zhang D, Frangi A F, et al. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Re-cognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137
[25]  Chen Y L, Hsu C T. Multilinear Graph Embedding: Representation and Regularization for Images. IEEE Trans on Image Proce-ssing, 2013, 23(2): 741-754
[26]  Rajwade A, Rangarajan A, Banerjee A. Image Denoising Using the Higher Order Singular Value Decomposition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 35(4): 849-862
[27]  Hou C P, Nie F P, Zhang C S, et al. Multiple Rank Multi-linear SVM for Matrix Date Classification. Pattern Recognition, 2014, 47(1): 454-469
[28]  Wang Q Z, Kang W W, Wu C M, et al. Computer-Aided Detection of Lung Nodules by SVM Based on 3D Matrix Patterns. Clinical Imaging, 2013, 37(1): 62-69
[29]  de Lathauwer L, de Moor B, Vandewalle J. A Multilinear Singular Value Decomposition. SIAM Journal on Matrix Analysis and Application, 2000, 21(4): 1253-1278
[30]  Vannieuwenhoven N, Vandebril R, Meerbergen K. A New Truncation Strategy for the Higher-Order Singular Value Decomposition. SIAM Journal on Scientific Computing, 2012, 34(2): A1027-A1052
[31]  Kroon D J. Active Shape Model (ASM) and Active Appearance Model (AAM)[EB/OL]. [2014-02-25]. http://www.mathworks.cn/matlabcentral/fileexchange/26706-active-shape-model-asm-and-active-appearance-m
[32]  Tomoshige S, Oost E, Shimizu A, et al. A Conditional Statistical Shape Model with Integrated Error Estimation of the Conditions: Application to Liver Segmentation in Non-contrast CT Images. Medical Image Analysis, 2014, 18(1): 130-143

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133