Lee S L A, Kouzani A Z, Hu E J. Automated Detection of Lung Nodules in Computed Tomography Images: A Review. Machine Vision and Applications, 2012, 23(1): 151-163
[2]
Kass M, Witkin A, Terzopoulos D. Snakes-Active Contour Models. International Journal of Computer Vision, 1987, 1(4): 321-331
[3]
Cootes T F, Taylor C J, Cooper D H, et al. Active Shape Models: Their Training and Application. Computer Vision and Image Understanding, 1995, 61(1): 38-59
[4]
Cootes T F, Edwards G J, Taylor C J. Active Appearance Models. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(6): 681-685
[5]
Cootes T F, Edwards G J, Taylor C J, et al. Comparing Active Shape Models with Active Appearance Models // Proc of the British Machine Vision Conference. Nottingham, UK, 1999, I: 173-182
[6]
Li B, Acton S T. Active Contour External Force Using Vector Field Convolution for Image Segmentation. IEEE Trans on Image Proce-ssing, 2007, 16(8): 2096-2106
[7]
Li B, Acton S T. Automatic Active Model Initialization via Poisson Inverse Gradient. IEEE Trans on Image Processing, 2008, 17(8):1406-1420
[8]
Qin L M, Zhu C, Zhao Y, et al. Generalized Gradient Vector Flow for Snakes: New Observations, Analysis, and Improvement. IEEE Trans on Circuits and Systems for Video Technology, 2013, 23(5): 883-897
[9]
Sukno F M, Ordas S, Butakoff C, et al. Active Shape Models with Invariant Optimal Features: Application to Facial Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(7): 1105-1117
[10]
Xu T, Mandal M, Long R, et al. An Edge-Region Force Guided Active Shape Approach for Automatic Lung Field Detection in Chest Radiographs. Computerized Medical Imaging and Graphics, 2012, 36(6): 452-463
[11]
Liu J M, Udupa J K. Oriented Active Shape Models. IEEE Trans on Medical Imaging, 2009, 28(4): 571-584
[12]
Ibragimov B, Likar B, Permus F, et al. A Game-Theoretic Framework for Landmark-Based Image Segmentation. IEEE Trans on Image Processing, 2012, 31(9): 1761-1776
[13]
Sun S H, Bauer C, Beichel R. Automated 3-D Segmentation of Lungs with Lung Cancer in CT Data Using a Novel Robust Active Shape Model Approach. IEEE Trans on Medical Imaging, 2012, 31(2): 449-460
[14]
Tobon-Gomez C, Sukno F M, Butakoff C, et al. Automatic Trai-ning and Reliability Estimation for 3D ASM Applied to Cardiac MRI Segmentation. Physics in Medicine and Biology, 2012, 57(13): 4155-4174
[15]
Wang Q Z, Kang W W, Wang B. Design of Two-Dimensional Mahalanobis Distance Based on ASM and Application in Lung Segmentation. Journal of Computational Information Systems, 2014, 10(16): 7027-7034
[16]
Tobon-Gomez C, Butakoff C, Aguade S, et al. Automatic Construction of 3D-ASM Intensity Models by Simulating Image Acquisition: Application to Myocardial Gated SPECT Studies. IEEE Trans on Medical Imaging, 2008, 27(11): 1655-1667
[17]
Lekadir K, Merrifield R, Yang G Z. Outlier Detection and Hand-ling for Robust 3D Active Shape Models Search. IEEE Trans on Medical Imaging, 2007, 26(2): 212-222
[18]
Chen X J, Udupa J K, Bagci U, et al. Medical Image Segmentation by Combining Graph Cuts and Oriented Active Appearance Models. IEEE Trans on Imaging Processing, 2012, 21(4): 2035-2046
[19]
Hu S Y, Colins D L. Joint Level-Set Shape Modeling and Appea-rance Modeling for Bra Structure Segmentation. NeuroImage, 2007, 36(3): 672-683
[20]
Larsen R, Stegmann M B, Darkner S, et al. Texture Enhanced Appearance Models. Computer Vision and Image Understanding, 2007, 106 (1): 20-30
[21]
Baka N, Milles J, Hendriks E A, et al. Segmentation of Myocar-dial Perfusion MR Sequences with Multi-band Active Appearance Models Driven by Spatial and Temporal Features. Proceedings of SPIE, 2008, 6914(3): 691415.1-691415.10
[22]
Toth R, Madabhushi A. Multifeature Landmark-Free Active Appearance Models: Application to Prostate MRI Segmentation. IEEE Trans on Medical Imaging, 2012, 31(8): 1638-1650
[23]
Toth R, Ribault J, Gentile J, et al. Simultaneous Segmentation of Prostatic Zones Using Active Appearance Models with Multiple Coupled Levelsets. Computer Vision and Image Understanding, 2013, 117(9): 1051-1060
[24]
Yang J, Zhang D, Frangi A F, et al. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Re-cognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137
[25]
Chen Y L, Hsu C T. Multilinear Graph Embedding: Representation and Regularization for Images. IEEE Trans on Image Proce-ssing, 2013, 23(2): 741-754
[26]
Rajwade A, Rangarajan A, Banerjee A. Image Denoising Using the Higher Order Singular Value Decomposition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 35(4): 849-862
[27]
Hou C P, Nie F P, Zhang C S, et al. Multiple Rank Multi-linear SVM for Matrix Date Classification. Pattern Recognition, 2014, 47(1): 454-469
[28]
Wang Q Z, Kang W W, Wu C M, et al. Computer-Aided Detection of Lung Nodules by SVM Based on 3D Matrix Patterns. Clinical Imaging, 2013, 37(1): 62-69
[29]
de Lathauwer L, de Moor B, Vandewalle J. A Multilinear Singular Value Decomposition. SIAM Journal on Matrix Analysis and Application, 2000, 21(4): 1253-1278
[30]
Vannieuwenhoven N, Vandebril R, Meerbergen K. A New Truncation Strategy for the Higher-Order Singular Value Decomposition. SIAM Journal on Scientific Computing, 2012, 34(2): A1027-A1052
[31]
Kroon D J. Active Shape Model (ASM) and Active Appearance Model (AAM)[EB/OL]. [2014-02-25]. http://www.mathworks.cn/matlabcentral/fileexchange/26706-active-shape-model-asm-and-active-appearance-m
[32]
Tomoshige S, Oost E, Shimizu A, et al. A Conditional Statistical Shape Model with Integrated Error Estimation of the Conditions: Application to Liver Segmentation in Non-contrast CT Images. Medical Image Analysis, 2014, 18(1): 130-143