全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SVM和PCA的痕量多组分气体检测方法*

DOI: 10.16451/j.cnki.issn1003-6059.201508007, PP. 720-727

Keywords: 支持向量机,主成分分析,多组分,痕量气体检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对气敏和光学传感器等常规方法难以检测痕量多组分气体的问题,采用快速色谱与气敏传感器阵列结合的检测方法获取痕量多组分气体的信号,然后对信号采用支持向量机(SVM)训练分类气体模式特征.为获得较好的气体识别模型,使用粒子群算法(PSO)优化SVM参数.通过对实际样品检测和识别,并对比评估同类检测仪器采用的检测识别方法,验证文中方法对混合气体的选择性更好,采用的SVM、PCA和PSO组合方法更适合处理和识别小样本数据.研制的多组分痕量气体检测样机具有更高的识别率、重复性和稳定性.

References

[1]  Wang S, Feng X L. Development of Multigas Analysis and Identifying Technology. Journal of Chongqing Institute of Technology: Natural Science Edition, 2007, 21(3): 78-81, 87 (in Chinese)(王 帅,冯新泸.多组分气体检测与识别技术进展.重庆工学院学报:自然科学版, 2007, 21(3): 78-81, 87)
[2]  Grall A J, Zellers E T, Sacks R D. High-Speed Analysis of Complex Indoor VOC Mixtures by Vacuum-Outlet GC with Air Carrier Gas and Programmable Retention. Environmental Science and Technology, 2001, 35(1): 163-169
[3]  Samuelsson R, Burvall J, Jirjis R. Comparison of Different Methods for the Determination of Moisture Content in Biomass. Biomass and Bioenergy, 2006, 30(11): 929-934
[4]  Shen C Y, Li J Q, Wang H M, et al. Real-Time Measurement of the Drug Precursor Chemicals with Proton Transfer Reaction Mass Spectrometry. Journal of Hunan University: Natural Sciences, 2009, 36(2): 75-79 (in Chinese)(沈成银,李建权,王鸿梅,等.易制毒化学品快速检测新技术.湖南大学学报:自然科学版, 2009, 36(2): 75-79)
[5]  Li J X, Wu B T, Wang X J. Recent Development Tendency and Application Foreground of Ion Mobility Spectrometry. Ship Science and Technology, 2006, 28(2): 13-15 (in Chinese)(李金香,武波涛,王兴军.离子迁移谱技术发展趋势和应用前景.舰船科学技术, 2006, 28(2): 13-15)
[6]  Qi R B, Yin X, Yang L, et al. Application of NIR Spectroscopy to Multiple Gas Components Identification. Spectroscopy and Spectral Analysis, 2008, 28(12): 2855-2858 (in Chinese)(齐汝宾,尹 新,杨 立,等.多成分有机气体的近红外光谱定量检测方法.光谱学与光谱分析, 2008, 28(12): 2855-2858)
[7]  Zhu H D, Luo Q, Zhou L, et al. Application Prospect of Natural Gas Component Analysis Using Laser Raman Spectroscopy. Natural Gas Industry, 2013, 33(11): 110-114 (in Chinese)(朱华东,罗 勤,周 理,等.激光拉曼光谱及其在天然气分析中的应用展望.天然气工业, 2013, 33(11): 110-114)
[8]  Hai Z, Wang J. Studies on Signal Feature Extraction and Sensor Optimization of an Electronic Nose. Chinese Journal of Sensors and Actuators, 2006, 19(3): 606-610 (in Chinese)(海 铮,王 俊.电子鼻信号特征提取与传感器优化的研究.传感技术学报, 2006, 19(3): 606-610)
[9]  Peng J. Study on Optimization of Sensor Array for E-nose System. Master Dissertation. Wuhan, China: Huazhong University of Science and Technology, 2008 (in Chinese)(彭 婧.气敏传感器阵列优化应用研究.硕士学位论文.武汉:华中科技大学, 2008)
[10]  Fan C Q. A Study of Feature Extraction for E-nose System. Master Dissertation. Wuhan, China: Huazhong University of Science and Technology, 2007 (in Chinese)(范超群.电子鼻系统中的特征提取研究.硕士学位论文.武汉:华中科技大学, 2007)
[11]  Melgani F, Bazi Y. Classification of Electrocardiogram Signals with Support Vector Machines and Particle Swarm Optimization. IEEE Trans on Information Technology in Biomedicine, 2008, 12(5):667- 677
[12]  Haykin S. Neural Networks: A Comprehensive Foundation. 2nd Edition. Upper Saddle River, USA: Prentice Hall, 2001
[13]  Yu Y, Wang B, Zhang L M. A Fast Data-Oriented Algorithm for Principal Component Analysis. Pattern Recognition and Artificial Intelligence, 2009, 22(4): 567-573 (in Chinese)(余 映,王 斌,张立明.一种面向数据学习的快速PCA算法.模式识别与人工智能, 2009, 22(4): 567-573)
[14]  Lin S W, Ying K C, Chen S C, et al. Particle Swarm Optimization for Parameter Determination and Feature Selection of Support Vector Machines. Expert Systems with Applications, 2008, 35(4): 1817-1824
[15]  Huang C L, Dun J F. A Distributed PSO-SVM Hybrid System with Feature Selection and Parameter Optimization. Applied Soft Computing, 2008, 8(4): 1381-1391
[16]  Shen Q, Shi W M, Kong W, et al. A Combination of Modified Particle Swarm Optimization Algorithm and Support Vector Machine for Gene Selection and Tumor Classification. Talanta, 2007, 71(4): 1679-1683
[17]  Yuan S F, Chu F L. Fault Diagnostics Based on Particle Swarm Optimization and Support Vector Machines. Mechanical Systems and Signal Processing, 2007, 21(4): 1787-1798
[18]  Trelea I C. The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection. Information Processing Letters, 2003, 85(6): 317-325
[19]  Ni Q J, Xing H C, Zhang Z Z, et al. Survey of Particle Swarm Optimization Algorithm. Pattern Recognition and Artificial Intelligence, 2007, 20(3): 349-357 (in Chinese)(倪庆剑,邢汉承,张志政,等.粒子群优化算法研究进展.模式识别与人工智能, 2007, 20(3): 349-357)
[20]  Shao X G, Yang H Z, Chen G. Parameters Selection and Application of Support Vector Machines Based on Particle Swarm Optimization Algorithm. Control Theory & Applications, 2006, 23(5): 740-743, 748 (in Chinese)(邵信光,杨慧中,陈 刚.基于粒子群优化算法的支持向量机参数选择及其应用.控制理论与应用, 2006, 23(5): 740-743,748)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133