Martinez A M, Kak A C. PCA Versus LDA. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233
[2]
Zhao W Y, Krishnaswamy A, Chellappa R, et al. Discriminant Analysis of Principal Component for Face Recognition. In: Proc of the 3rd International Conference on Automatic Face and Gesture Recognition. Nara, Japan, 1998, 336-341
[3]
de s Marquess J P. Pattern Recognition-Concepts, Methods and Application. Heidelberg, Germany: Springer-Verlag, 2001 (de s Marquess J P,著;吴逸飞,译. 模式识别——原理、方法及应用. 北京: 清华大学出版社, 2003)
[4]
Fan J C, Mei C L. Data Analysis. Beijing, China: Science Press, 2002 (in Chinese) (范金城,梅长林. 数据分析. 北京: 科学出版社, 2002)
[5]
Li Y, Lü K H. The Application of the Principal Components Analysis(PCA) to Debris Recognition. Journal of National University of Defense Technology, 2004, 26(1): 89-94 (in Chinese) (李 岳,吕克洪.主成分分析在铁谱磨粒识别中的应用研究. 国防科技大学学报, 2004, 26(1): 89-94)
[6]
Yang H L, Can Y, Chen G J, Wu Y X. Principal Component Analysis Based Artificial Neural Networks for Arc Welding Quality Control. Transactions of the China Welding Institution, 2003, 24(4): 55-58 (in Chinese) (杨海澜,蔡 艳,陈庚军,吴毅雄.主成分分析结合神经网络技术在焊接质量控制中的应用. 焊接学报, 2003, 24(4): 55-58)
[7]
Wang X R, Wang S G. Static Analysis of Practical Multivariate. Shanghai, China: Shanghai Science and Technology Publishers, 1990 (in Chinese) (王学仁,王松桂.实用多元统计分析. 上海: 上海科学技术出版社, 1990)