Verleysen M. Learning High-Dimensional Data. In: Ablameyko S, et al, eds. Limitation and Future Trends in Neural Computation. Amsterdam, the Netherlands: IOS Press, 2003, 141-162
[2]
Cox T F, Cox M A A. Multidimensional Scaling. London, UK: Chapman and Hall, 1994
[3]
Kohonen T. Self-Organizing Maps. 3rd Edition. New York, USA: Springer-Verlag, 2001
[4]
Zha H Y, Zhang Z Y. Isometric Embedding and Continuum ISOMAP. In: Proc of the 20th International Conference on Machine Learning. Washington, USA, 2003, 864-871
[5]
Kegl B. Intrinsic Dimension Estimation Using Packing Numbers. In: Proc of the Conference on Neural Information Processing Systems. Vancouver, Canada, 2002, 681-688
[6]
Huo X M, Chen J H. Local Linear Projection (LLP). In: Proc of the 1st IEEE Workshop on Genomic Signal Processing and Statistics. Raleigh, USA, 2002. http://www.gensips.gatech.edu/proceedings/contributed/cp1-07.pdf
[7]
Bruske J, Sommer G. Intrinsic Dimensionality Estimation with Optimally Topology Preserving Maps. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(5): 572-575
[8]
Jolliffe I T. Principle Component Analysis. New York, USA: Springer-Verlag, 1986
[9]
Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290(5500): 2323-2326
[10]
Beyer K S, Goldstein J, Ramakrishnan R, Shaft U. When is “Nearest Neighbor” Meaningful? In: Proc of the 7th International Conference on Database Theory. London, UK: Springer-Verlag, 1999, 217-235