全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于LLE方法的本征维数估计

, PP. 7-13

Keywords: 局部线性嵌入(LLE),本征维数,拓扑结构,高维数据空间

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于局部线性嵌入(LLE)方法所确定的数据集的拓扑结构和高维数据空间的距离特性,提出了自逼近度和可分离度的概念,然后利用二者构建了一种新的本征维数估计方法.这种估计方法揭示了LLE降维过程中涉及的数据维数与邻域大小的选取之间的内在关联.最后,通过与主成分分析(PCA)进行实例对比,说明这种方法更加合理,更能反映数据集的本征特性.

References

[1]  Verleysen M. Learning High-Dimensional Data. In: Ablameyko S, et al, eds. Limitation and Future Trends in Neural Computation. Amsterdam, the Netherlands: IOS Press, 2003, 141-162
[2]  Cox T F, Cox M A A. Multidimensional Scaling. London, UK: Chapman and Hall, 1994
[3]  Kohonen T. Self-Organizing Maps. 3rd Edition. New York, USA: Springer-Verlag, 2001
[4]  Zha H Y, Zhang Z Y. Isometric Embedding and Continuum ISOMAP. In: Proc of the 20th International Conference on Machine Learning. Washington, USA, 2003, 864-871
[5]  Kegl B. Intrinsic Dimension Estimation Using Packing Numbers. In: Proc of the Conference on Neural Information Processing Systems. Vancouver, Canada, 2002, 681-688
[6]  Huo X M, Chen J H. Local Linear Projection (LLP). In: Proc of the 1st IEEE Workshop on Genomic Signal Processing and Statistics. Raleigh, USA, 2002. http://www.gensips.gatech.edu/proceedings/contributed/cp1-07.pdf
[7]  Bruske J, Sommer G. Intrinsic Dimensionality Estimation with Optimally Topology Preserving Maps. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(5): 572-575
[8]  Jolliffe I T. Principle Component Analysis. New York, USA: Springer-Verlag, 1986
[9]  Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290(5500): 2323-2326
[10]  Beyer K S, Goldstein J, Ramakrishnan R, Shaft U. When is “Nearest Neighbor” Meaningful? In: Proc of the 7th International Conference on Database Theory. London, UK: Springer-Verlag, 1999, 217-235

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133