全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

网格聚类中的边界处理技术*

, PP. 277-280

Keywords: 网格聚类,边界处理,精度

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出利用限制性k近邻和相对密度的概念识别网格聚类边界点的技术,给出网格聚类中的边界处理算法和带边界处理的网格聚类算法(GBCB).实验表明,聚类边界处理技术精度高,能有效地将聚类的边界点和孤立点/噪声数据分离开来.基于该边界处理技术的网格聚类算法GBCB能识别任意形状的聚类.由于它只对数据集进行一遍扫描,算法的运行时间是输入数据大小的线性函数,可扩展性好.

References

[1]  Sheikholeslami G, Chatterjee S, Zhang A D. WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases. In: Proc of the 24th International Conference on Very Large Data Bases. New York, USA, 1998, 428-439
[2]  Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. In: Proc of the ACM SIGMOD International Conference on Management of Data. Seattle, USA, 1998, 94-105
[3]  Zhao Y C, Song J D. GDILC: A Grid-Based Density-Isoline Clustering Algorithm. In: Proc of the International Conference on Info-Tech and Info-Net. Beijing, China, 2001, 140-145
[4]  Hsu C M, Chen M S. Subspace Clustering of High Dimensional Spatial Data with Noises. In: Proc of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. Sydney, Australia, 2004, 31-40
[5]  Ma E W M, Chow T W S. A New Shifting Grid Clustering Algorithm. Pattern Recognition, 2004, 37(3): 503-514
[6]  Hinneburg A, Keim D A. Optional Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In: Proc of the 25th International Conference on Very Large Data Bases. Edinburgh, Scotland, 1999, 506-517
[7]  Han J W, Kamber M. Data Mining: Concepts and Techniques. Orlando, USA: Morgan Kaufmann, 2000 (Han J W, Kamber M,著;范 明,孟小峰,等,译.数据挖掘概念与技术.北京:机械工业出版社,2001)
[8]  Wang W, Yang J, Muntz R R. STING: A Statistical Information Grid Approach to Spatial Data Mining. In: Proc of the 23rd International Conference on Very Large Data Bases. Athens, Greece, 1997, 186-195

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133