全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于时间模型的蚁群算法*

, PP. 215-219

Keywords: 蚁群算法,时间模型,仿真

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的蚁群算法,从仿生学的角度出发,已经成功应用于解决各种组合优化问题.但是由于其在应用时需要调试多个参数,这给那些没有经验的用户带来很多不便.本文从仿生的基础出发,回归到传统蚁群算法提出的基础,提出基于时间模型的蚁群算法.假定每只蚂蚁的速度相等,每时每刻都在爬行,单位时间内蚂蚁行进的距离为dmin.蚂蚁通过路径上遗留的信息素进行交流,趋向于浓度高的路径.经过若干时间后,蚁群的轨迹将停留在一条最优路径上.实验表明,较传统算法而言,该算法所需调整的参数更少,性能接近或更优,具有更好的可操作性,在仿真应用上更具直观性.

References

[1]  Colorni A, Dorigo M, Maniezzo V. Distributed Optimization by Ant Colonies. In: Proc of the 1st European Conference on Artificial Life. Paris, France, 1992, 134-142
[2]  Dorigo M, Maniezzo V, Colorni A. The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans on Systems, Man, and Cybernetics, 1996, 26(1): 29-41
[3]  Dorigo M, Gambardella L M. Ant Colonies for the Traveling Salesman Problem. BioSystems, 1997, 43(2): 73-81
[4]  Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Trans on Evolutionary Computation, 1997, 1(1): 53-66
[5]  Sun T, Wang X K, Liu Y X, et al. Ant Algorithm and Analysis on Its Convergence. Mini-Micro Systems, 2003, 24(8): 1524-1527 (in Chinese) (孙 焘,王秀坤,刘业欣,等.一种简单蚂蚁算法及其收敛性分析.小型微型计算机系统, 2003, 24(8): 1524-1527)
[6]  Jin P, Fan J B, Tan Y D. Neural Network and Neural Computer. Chengdu, China: Southwest Jiaotong University Press, 1991, 375-377 (in Chinese) (靳 藩,范俊波,谭永东.神经网络与神经计算机.成都:西南交通大学出版社,1991, 375-377)
[7]  Jin P. Basic of Neural Computational Intelligence. Chengdu, China: Southwest Jiaotong University Press, 2000, 300-308 (in Chinese) (靳 藩.神经计算智能基础.成都:西南交通大学出版社,2000, 300-308)
[8]  Kang L S, Xie Y, You S Y, et al. Non-Numerical Parallel Algorithm-Simulated Annealing Algorithm. Beijing, China: Science Press, 1994, 150-151 (in Chinese) (康立山,谢 云,尤矢勇,等.非数值并行算法——模拟退火算法.北京:科学出版社, 1994, 150-151)
[9]  Website. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/
[10]  Website. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/TSPFAQ.html

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133