全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于证据理论和硬c均值法的不确定性信息聚类

, PP. 393-399

Keywords: 证据理论,信息聚类,冲突证据,硬c均值法(HCM)

Full-Text   Cite this paper   Add to My Lib

Abstract:

在对于多源不确定性信息进行分析时,需要根据其来源对信息分类.本文研究以证据形式表达的多源信息聚类问题,详细分析证据聚类的评价标准,提出将证据空间向欧氏空间转化,利用硬c均值聚类法对多源不确定性信息聚类.基于以上理论,给出一个利用多源传感器ESM实现空中目标跟踪的实例.

References

[1]  Sidenbladh H, Svenson P, Schubert J. Comparing Multi-Target Trackers on Different Force Unit Levels. Proc of the SPIE, 2004, 5429: 306-314
[2]  Shafer G. A Mathematical Theory of Evidence. Princeton, USA: Princeton University Press, 1976
[3]  Bergsten U, Schubert J, Svensson P. Applying Data Mining and Machine Learning Techniques to Submarine Intelligence Analysis. In: Proc of the 3rd International Conference on Knowledge Discovery and Data Mining. Newport Beach, USA, 1997, 127-130
[4]  Klein L A. Sensor and Data Fusion Concepts and Applications. 2nd Edition. Beillingham, USA: SPIE Optical Engineering Press, 1999
[5]  Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell, USA: Kluwer Academic Publishers, 1981
[6]  Schubert J. Fast Dempster-Shafer Clustering Using a Neural Network Structure. In: Proc of the 7th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Paris, France, 1998, 1438-1445
[7]  Schubert J. A Neural Network and Iterative Optimization Hybrid for Dempster-Shafer Clustering. In: Bedworth M, Brien J O, eds. Proc of the International Conference on Data Fusion. Great Malvern, UK, 1998, 29-36
[8]  Schubert J. Simultaneous Dempster-Shafer Clustering and Gradual Determination of Number of Clusters Using a Neural Network Structure. In: Proc of the Conference on Information, Decision and Control. Adelaide, Australia, 1999, 401-406
[9]  Bengtsson M, Schubert J. Dempster-Shafer Clustering Using Potts Spin Mean Field Theory. Soft Computing, 2001, 5(3): 215-228
[10]  Schubert J. On Nonspecific Evidence. International Journal of Intelligent Systems, 1993, 8(6): 711-725
[11]  Smets P. The Transferable Belief Model for Quantified Belief Representation. In: Gabbay D M, Smets P, eds. Handbook of Defeasible Reasoning and Uncertainty Management Systems. Doordrecht, The Netherlands: Kluwer Academic Publishers, 1998, Ⅰ: 267-301
[12]  Smets P. Belief Functions and the Transferable Belief Model. 2000. http://www.sipta.org/documentation/belief.pdf
[13]  Ross T J. Fuzzy Logic for Engineering Applications. New York, USA: The McGraw-Hill Companies, 1995 (Ross T J,著;钱同惠,沈其聪,译.模糊逻辑及其工程应用. 北京:电子工业出版社, 2001)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133