全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进SVM的叶元数目预测

, PP. 557-560

Keywords: 叶元,支持向量机,信息几何

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据外界温度预测叶元数目在建立虚拟植物生长模型中有着重要意义.但是由于环境存在高噪声,不能通过简单的SVM或者最小二乘进行回归预测.本文从信息几何角度,构造具有数据依赖性的核函数,克服建模数据的高噪声、非线性,从而能准确预测叶元数目与温度函数关系.最后把模型应用于棉花生长模型的叶元预测,并和标准SVM、最小二乘进行比较.实验证明新模型在准确度上有较大提高.

References

[1]  Hu B G, Zhao X, et al. Plant Growth Modeling and Visualization -Review and Perspective. Acta Automatica Sinica, 2001, 27(6): 816-835 (in Chinese) (胡包钢,赵 星,等.植物生长建造模型与可视化——回顾与展望.自动化学报, 2001, 27(6): 816-835)
[2]  Guo Y, Li B G. Research Summary about Virtual Plant. Chinese Science Bulletin, 2001, 46(4): 273-280 (in Chinese) (郭 炎,李保国.虚拟植物的研究进展.科学通报, 2001, 46(4): 273-280)
[3]  Ding W L.Research of the Agricultural Expert System Based on Artificial Plant Growth Model.Journal of Zhejiang University of Technology, 2005, 33(5): 525-533 (in Chinese) (丁维龙.基于虚拟植物生长模型的农业专家系统研究.浙江工业大学学报, 2005, 33(5): 525-533)
[4]  McKinion J M, Baker D N, Whisler F D, Lambert J R. Application of Gossym/Comax System to Cotton Crop Management. Agricultural Systems, 1989, 31: 55-65
[5]  de Reffye P, Edelin C , Francon J, et al. Plant Models Faithful to Botanical Structure and Development. ACM Computer Graphics, 1988, 22(4): 151-158
[6]  Ma Y, Huang D X, Jin Y H. Soft-Sensor Modeling Method Based on Support Vector Machine. Information and Control, 2004, 33(4): 417-421 (in Chinese) (马 勇,黄德先,金以慧.基于支持向量机的软测量建模方法.信息与控制, 2004, 33(4): 417-421)
[7]  Sun Y F, Liang Y C. An Improved Method for Kernel Function with Data-Dependent Type of Support Vector Machine. Journal of Jilin University (Science Edition), 2003, 41(3): 329-333 (in Chinese) (孙延风,梁艳春.支持向量机的数据依赖型核函数改进算法.吉林大学学报(理学版), 2003, 41(3): 329-333)
[8]  Vapnik V N. Statistical Learning Theory. New York, USA: Wiley, 1998
[9]  Boser B E, Guyon I M, Vapnik V N. A Training Algorithm for Optimal Margin Classifiers. In: Proc of the 5th Annual Workshop on Computational Learning Theory. Pittsburgh, USA, 1992
[10]  Cortes C, Vapnik V N. Support Vector Networks. Machine Learning, 1995, 20(3): 273-297
[11]  Bishop C M. Training with Noise is Equivalent to Tikohonov Regularization. Neural Computation, 1995, 7: 108-116
[12]  Vapnik V N, Chervonenkis A Y. Necessary and Sufficient Conditions for the Uniform Convergence of Means to Their Expectations. Theory of Probability and Its Applications, 1981, 26(3): 532-553

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133