全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大尺度遥感图像中港口目标快速识别

, PP. 552-556

Keywords: 多尺度,期望最大化算法,特征提取,阈值分割

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种在大幅面灰度遥感卫星图像中快速识别港口目标的方法.通过对图像多分辨率处理,采用阈值方法进行海洋和陆地的分割,并在基于块的统计特征表示方法的基础上,建立快速分割中、小型港口候选区域方法,再根据港口的固有特征(半封闭区域)实现快速的港口目标识别.通过18幅大尺度图像对算法进行测试,测试结果显示算法能够在不到3s时间内识别一幅10000像素×10000像素图像中的港口,识别正确率为93.9%.

References

[1]  Li Y, Peng J X. Feature Extraction of the Harbor Target and Its Recognition. Journal of Huazhong University of Science and Technology (Natural Science), 2001, 29(6): 10-12 (in Chinese) (李 艳, 彭嘉雄. 港口目标特征提取与识别. 华中科技大学学报(自然科学版), 2001, 29(6): 10-12)
[2]  Tabb M, Ahuja N. Multiscale Image Segmentation by Integrated Edge and Region Detection. IEEE Trans on Image Processing, 1997, 6(5): 642-655
[3]  Sonka M, Hlavac V, Boyle R. Image Processing Analysis and Machine Vision. 2nd Edition. Pacific Grove: Thomson, 1999 (Sonka M, Hlavac V, Boyle R,著;艾海舟,武 勃,译.图像处理分析与机器视觉. 北京:人民邮电出版社, 2003)
[4]  Sezgin M, Sankur B. A Survey over Image Thresholding Techniques and Quantitative Performance Evaluation. Journal of Electronic Imaging, 2004, 13(1): 146-165
[5]  Otsu N. A Threshold Selection Method from Grey-Level Histograms. IEEE Trans on Systems, Man, and Cybernetics, 1978, 9(1): 62-66
[6]  Kittler J, Illingworth J. Minimum Error Thresholding. Pattern Recognition, 1986, 19(1): 41-47
[7]  Li C H, Tam P K S. An Iterative Algorithm for Minimum Cross Entropy Thresholding. Pattern Recognition Letters, 1998, 19(8): 771-776
[8]  Yan H. Unified Formulation of a Class of Image Thresholding Techniques. Pattern Recognition, 1996, 29(12): 2025-2032
[9]  Blimes J A. A Gentle Tutorial of the EM Algorithm and Its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical Report, ICSI-TR-97-021, International Computer Science Institute, University of Berkeley, Berkeley, USA, 1998
[10]  Cheung Y M. Maximum Weighted Likelihood via Rival Penalized EM for Density Mixture Clustering with Automatic Model Selection. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 750-761

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133