全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合统计模型和曲线演化的左心室MRI图像分割*

, PP. 509-514

Keywords: 曲线演化,概率密度函数,水平集方法,核磁共振成像(MRI),图像分割

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出结合区域统计模型和图像梯度信息的MRI图像分割算法.由于心脏的变形和血液的流动,MRI图像中出现弱边界、局部梯度极大值区域、伪影等现象.基于图像梯度构造停止项的水平集方法难以分割此类图像.本文提出两阶段图像分割算法.首先结合先验知识和直方图,确定图像中像素的类别总数.用极大似然估计原理求出每一类的先验概率和概率分布参数,根据像素属于感兴趣区域(ROI)的后验概率构造水平集速度函数,通过曲线演化获取ROI的粗边界.然后再使用图像梯度构造速度函数对边界进行细化.实验结果表明,本文算法能够有效分割心脏MRI图像.

References

[1]  Lin Y, Tian J. A Review on Segmentation Methods of Medical Images. Pattern Recognition and Artificial Intelligence, 2002, 15(2):192-204 (in Chinese) (林 瑶,田 捷.医学图像分割方法综述.模式识别与人工智能, 2002, 15(2): 192-204)
[2]  Kass M, Witkin A, Terzopoulos D. Snake: Active Contour Models. International Journal of Computer Vision, 1988, 1(4): 321-331
[3]  Osher S, Sethian J A. Fronts Propagating with Curvature Dependent Speed: Algorithms Based on the Hamilton-Jacobi Formulations. Journal of Computational Physics, 1988, 79(1): 12-49
[4]  Paragios N, Deriche R. Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach. In: Proc of the 6th European Conference on Computer Vision. Dublin, Ireland, 2000, Ⅱ: 224-240
[5]  Caselles V, Kimmel R, Sapiro G. Geodesic Active Contours. International Journal of Computer Vision, 1997, 22 (1): 61-79
[6]  Malladi R, Sethian J A, Vemuri B C. Shape Modeling with Front Propagation: A Level Set Approach. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175
[7]  Wang Z, Yang X, Li J, Shi P F. An Interactive Model for Segmentation of Medical Image. Pattern Recognition and Artificial Intelligence, 2002, 15(4): 392-396 (in Chinese) (王 峥,杨 新,李 俊,施鹏飞.基于水平集人机交互模型的医学图像分割.模式识别与人工智能,2002,15(4): 392-396)
[8]  Deng J W, Tsui H T. A Fast Level Set Method for Segmentation of Low Contrast Noisy Biomedical Images. Pattern Recognition Letters, 2002, 23(1-3): 161-169
[9]  Suri J S. Leaking Prevention in Fast Level Sets Using Fuzzy Models: An Application in MR Brain. In: Proc of the International Conference on Information Technology and Applications in Biomedicine. Arlington, USA, 2000, 220-225
[10]  Zhu F P , Tian J, et al. Medical Image Segmentation Based on Level Set Method. Journal of Software, 2002, 13(9): 1866-1871 (in Chinese) (朱付平,田 捷,等.基于Level Set方法的医学图像分割.软件学报, 2002,13(9): 1866-1871)
[11]  Sethian J A. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge, UK: Cambridge University Press, 1996
[12]  Moon T K. The Expectation Maximization Algorithm. IEEE Signal Processing Magazine, 1996, 13(6): 47-60
[13]  Xu C, Prince J L. Snakes, Shapes and Gradient Vector Flow. IEEE Trans on Image Processing, 1998, 7(3): 359-369
[14]  Adalsteinsson D, Sethian J A. A Fast Level Set Method for Propagating Interfaces. Journal of Computational Physics, 1995, 118(2): 269-277
[15]  Adalsteinsson D, Sethian J A. The Fast Construction of Extension Velocities in Level Set Methods. Journal of Computational Physics, 1999,148 (1): 2-22
[16]  Tsai Y H R. Rapid and Accurate Computation of the Distance Function Using Grids. Journal of Computational Physics, 2002, 178(1): 175-195

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133