全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于依赖分析的贝叶斯网络结构学习算法*

, PP. 445-449

Keywords: 贝叶斯网络,结构学习,依赖分析,打分搜索

Full-Text   Cite this paper   Add to My Lib

Abstract:

贝叶斯网络是不确定性环境下知识表示和推理的有效工具之一.现有的贝叶斯网络结构学习算法不同程度地存在学习效率偏低的问题,为此,本文提出一种高效而且可靠的贝叶斯网络结构学习算法ISOR.首先使用最大生成树算法和启发式切割集搜索算法以确定网络中所有可能的边,然后结合碰撞识别方法和启发式打分搜索方法识别出所有边的方向,最后进行冗余边检验.与当前基于依赖分析的其它算法相比,该算法有效降低条件独立性检验的次数和阶数.算法分析和应用于Alarm网络的实验结果均表明,算法ISOR具有良好的性能.

References

[1]  Chickering D M, Herkerman D, Meek C. Large-Sample Learning of Bayesian Networks is NP-Hard. Journal of Machine Learning Research, 2004, 5: 1287-1330
[2]  Cooper G F, Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 1992, 9(4): 309-347
[3]  Cheng J, Greiner R, Kelly J. Learning Bayesian Networks from Data: An Efficient Information- Theory Based Approach. Artificial Intelligence, 2002, 137(1-2): 43-90
[4]  Verma T, Pearl J. An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation. In: Dubois D, Wellman M P, et al, eds. Proc of the 8th Conference on Uncertainty in Artificial Intelligence. Stanford, USA: Morgan Kaufmann, 1992, 323-330
[5]  Sprites P, Glymour C, Scheines R. Causality from Probability. In: Mckee G, ed. Evolving Knowledge in Natural and Artificial Intelligence. London, UK: Pitman, 1990,181-199
[6]  Sprites P, Glymour C, Scheines R. An Algorithm for Fast Recovery of Sparse Causal Graphs. Social Science Computer Review, 1991, 9(1): 62-72
[7]  Peng H C, Ding C. Structure Search and Stability Enhancement of Bayesian Networks. In: Proc of the 3rd IEEE International Conference on Data Mining. Melbourne, USA, 2003, 621-624
[8]  Yao H L, Wang H, Hu X G, Wang R G. A Refinement Algorithm of Bayesian Network Structures Based on Genetic Algorithm and Minimum Description Length Principle. Journal of Nanjing University (Natural Sciences), 2002, 38(2): 23-27 (in Chinese) (姚宏亮,王 浩,胡学钢,汪荣贵. 基于遗传算法和MDL原则的贝叶斯网络结构优化算法. 南京大学学报(自然科学版), 2002, 38(2): 23-27)
[9]  Pearl J. Probabilistic Reasoning in Intelligente Systems: Networks of Plausible Inference. San Mateo, USA: Morgan Kaufmann, 1988
[10]  Wong M L, Leung K S. An Efficient Data Mining Method for Learning Bayesian Networks Using an Evolutionary Algorithm-Based Hybrid Approach. IEEE Trans on Evolutionary Computation, 2004, 8(4): 378-404
[11]  Chow C K, Liu C N. Approximating Discrete Probability Distributions with Dependence Trees. IEEE Trans on Information Theory, 1968, 14(3): 462-467
[12]  Sprites P, Glymour C, Scheines R. Causation, Prediction and Search. 2nd Edition. Cambridge, USA: MIT Press, 2002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133