全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于HMM/SVM两级结构的汉语易混淆语音识别*

, PP. 578-584

Keywords: 语音识别,易混淆语音,隐马尔可夫模型(HMM),支持向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于HMM的汉语语音识别中,易混淆语音的识别率仍然不高.在分析HMM固有缺陷的基础上,本文提出一种使用SVM在HMM系统上进行二次识别来提高易混淆语音识别率的方法.通过引入置信度估计环节,提高系统性能和效率.通过充分利用Viterbi解码获得的信息来构造新的分类特征,从而解决标准SVM难以处理可变长数据的问题.详细探讨这种两级识别结构中置信度估计、分类特征提取和SVM识别器构造等问题.语音识别实验的结果显示,与采用HMM/SVM混合结构的模型相比,本文方法在对识别速度影响很小的情况下可以使识别率有明显提高.这表明所提出的具有置信估计环节的HMM/SVM两级结构用于易混淆语音识别是可行的.

References

[1]  Platt J C. Probabilities for SV Machines // Smola A J, Scholkpf B, Bartlett P L, et al, eds. Advances in Large Margin Classifiers. Cambridge, USA: MIT Press, 2000: 61-74
[2]  Hsu C W, Lin C J. A Comparison of Methods for Multi-Class Support Vector Machines. IEEE Trans on Neural Networks, 2002, 13(2): 415-425
[3]  Zhou Tongchun. Chinese Phonetics. Beijing, China: Beijing Normal University Press, 1999 (in Chinese) (周同春. 汉语语音学. 北京:北京师范大学出版社, 1990)
[4]  Chang C C, Lin C J. LIBSVM: A Library for Support Vector Machines [EB/OL]. [2001-04-01] http://www.csie.ntu.edu.tw/~cjlin/libsvm
[5]  Li Husheng, Liu Jia, Liu Runsheng. High Performance Digit Mandarin Speech Recognition. Journal of Tsinghua University: Science and Technology, 2000, 40(1): 32-34 (in Chinese) (李虎生, 刘 加, 刘润生. 高性能汉语数码语音识别算法. 清华大学学报: 自然科学版, 2000, 40(1): 32-34)
[6]  Ganapathiraju A, Hamarker J, Picone J. Support Vector Machines for Speech Recognition // Proc of the International Conference on Spoken Language Processing. Sydney, Australia, 1998: 2923-2926
[7]  Aldebaro K. Speech Recognition Using Discriminative Classifiers. Ph.D Dissertation. San Diero, USA: University of California, 2003
[8]  Ganapathiraju A, Hamaker J E, Picone J. Applications of Support Vector Machines to Speech Recognition. IEEE Trans on Signal Processing, 2004, 52(8): 2348-2355
[9]  Smith N, Gales M. Speech Recognition Using SVMs // Dietterich T G, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems 14. Cambridge, USA: MIT Press, 2002: 117-129
[10]  Shimodaira H, Noma K, Nakai M, et al. Dynamic Time-Alignment Kernel in Support Vector Machine // Dietterich T G, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems 14.Cambridge, USA: MIT Press, 2002, Ⅱ: 921-928
[11]  Fine S, Saon G, Gopinath R A. Digit Recognition in Noisy Environments via a Sequential GMM/SVM System // Proc of the International Conference on Acoustics, Speech, and Signal Processing. Orlando, USA, 2002: 2242-2246
[12]  Salomon J, King S, Osborne M. Framewise Phone Classification Using Support Vector Machines // Proc of the International Conference on Spoken Language Processing. Denver, USA, 2002: 2645-2648

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133